Average geodesic distance on stretched Sierpinski gasket

被引:18
作者
Li, Yuanyuan [1 ]
Fan, Jiaqi [1 ]
Xi, Lifeng [1 ]
机构
[1] Ningbo Univ, Sch Math & Stat, Ningbo 315211, Peoples R China
基金
中国国家自然科学基金;
关键词
Average geodesic distance; Finite pattern; Stretched Sierpinski gasket; SELF-SIMILARITY; SMALL-WORLD; NETWORKS;
D O I
10.1016/j.chaos.2021.111120
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The stretched Sierpi nski gasket is a local self-similar set, but not strictly self-similar. By the local self similarity of scale and measure, we calculate its average geodesic distance within the gasket by the method of finite pattern. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:5
相关论文
共 24 条
[1]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[2]   On the fundamental geometrical properties of linearly measurable plane sets of points. [J].
Besicovitch, AS .
MATHEMATISCHE ANNALEN, 1928, 98 :422-464
[3]   Structure properties and weighted average geodesic distances of the Sierpinski carpet fractal networks [J].
Dai, Meifeng ;
Huang, Fang ;
Zhu, Jie ;
Guo, Yuanyuan ;
Li, Yin ;
Qiu, Hua ;
Su, Weiyi .
PHYSICA SCRIPTA, 2020, 95 (06)
[4]   Weighted average geodesic distance of Vicsek network [J].
Deng, Juan ;
Ye, Qianqian ;
Wang, Qin .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 527
[5]  
Falconer Kenneth., 1997, Techniques in fractal geometry
[6]   THE AVERAGE DISTANCE ON THE SIERPINSKI GASKET [J].
HINZ, AM ;
SCHIEF, A .
PROBABILITY THEORY AND RELATED FIELDS, 1990, 87 (01) :129-138
[7]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747
[8]   Fractality and self-similarity in scale-free networks [J].
Kim, J. S. ;
Goh, K-I ;
Kahng, B. ;
Kim, D. .
NEW JOURNAL OF PHYSICS, 2007, 9
[9]  
Kleinberg J, 2002, ADV NEUR IN, V14, P431
[10]  
Kleinberg J., 2000, Proceedings of the Thirty Second Annual ACM Symposium on Theory of Computing, P163, DOI 10.1145/335305.335325