Breaking the 2(n)-barrier for Irredundance: Two lines of attack

被引:16
作者
Binkele-Raible, Daniel [1 ]
Brankovic, Ljiljana [2 ]
Cygan, Marek [3 ]
Fernau, Henning [1 ]
Kneis, Joachim [4 ]
Kratsch, Dieter [5 ]
Langer, Alexander [4 ]
Liedloff, Mathieu [6 ]
Pilipczuk, Marcin [3 ]
Rossmanith, Peter [4 ]
Wojtaszczyk, Jakub Onufry [7 ]
机构
[1] Univ Trier, FB Abt Informat 4, Trier, Germany
[2] Univ Newcastle, Sch Elect Engn & Comp Sci, Callaghan, NSW, Australia
[3] Univ Warsaw, Fac Math Informat & Mech, Warsaw, Poland
[4] Rhein Westfal TH Aachen, Dept Comp Sci, Aachen, Germany
[5] Univ Paul Verlaine Metz, Lab Informat Theor & Appl, Metz, France
[6] Univ Orleans, Lab Informat Fondamentale Orleans, Orleans, France
[7] Polish Acad Sci, Inst Math, Warsaw, Poland
关键词
Graph algorithms; Irredundance number;
D O I
10.1016/j.jda.2011.03.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The lower and the upper irredundance numbers of a graph G, denoted ir(G) and IR(G), respectively, are conceptually linked to the domination and independence numbers and have numerous relations to other graph parameters. It has been an open question whether determining these numbers for a graph G on n vertices admits exact algorithms running in time faster than the trivial Theta(2(n) center dot poly(n)) enumeration, also called the 2(n)-barrier. The main contributions of this article are exact exponential-time algorithms breaking the 2(n)-barrier for irredundance. We establish algorithms with running times of O*(1.99914(n)) for computing ir(G) and O*(1.9369(n)) for computing IR(G). Both algorithms use polynomial space. The first algorithm uses a parameterized approach to obtain (faster) exact algorithms. The second one is based, in addition, on a reduction to the Maximum Induced Matching problem providing a branch-and-reduce algorithm to solve it. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:214 / 230
页数:17
相关论文
共 36 条
  • [1] Abu-Khzam FN, 2006, LECT NOTES COMPUT SC, V4169, P264
  • [2] DOMINATION AND INDEPENDENT DOMINATION NUMBERS OF A GRAPH
    ALLAN, RB
    LASKAR, R
    [J]. DISCRETE MATHEMATICS, 1978, 23 (02) : 73 - 76
  • [3] Binkele-Raible D, 2010, LECT NOTES COMPUT SC, V6078, P311, DOI 10.1007/978-3-642-13073-1_28
  • [4] Bjorklund A, 2008, LECT NOTES COMPUT SC, V5125, P198, DOI 10.1007/978-3-540-70575-8_17
  • [5] SET PARTITIONING VIA INCLUSION-EXCLUSION
    Bjorklund, Andreas
    Husfeldt, Thore
    Koivisto, Mikko
    [J]. SIAM JOURNAL ON COMPUTING, 2009, 39 (02) : 546 - 563
  • [6] GRAPH-THEORETIC PARAMETERS CONCERNING DOMINATION, INDEPENDENCE, AND IRREDUNDANCE
    BOLLOBAS, B
    COCKAYNE, EJ
    [J]. JOURNAL OF GRAPH THEORY, 1979, 3 (03) : 241 - 249
  • [7] THE IRREDUNDANCE NUMBER AND MAXIMUM DEGREE OF A GRAPH
    BOLLOBAS, B
    COCKAYNE, EJ
    [J]. DISCRETE MATHEMATICS, 1984, 49 (02) : 197 - 199
  • [8] Weighted irredundance of interval graphs
    Chang, MS
    Nagavamsi, P
    Rangan, CP
    [J]. INFORMATION PROCESSING LETTERS, 1998, 66 (02) : 65 - 70
  • [9] Chor B, 2004, LECT NOTES COMPUT SC, V3353, P257
  • [10] Cockayne E. J., 1997, Journal of Combinatorial Mathematics and Combinatorial Computing, V25, P213