MULTIFRACTAL SCALING FROM NONLINEAR TURBULENCE DYNAMICS - ANALYTICAL METHODS

被引:4
作者
EGGERS, J
机构
[1] Universität Gesamthochschule Essen, Fachbereich Physik
来源
PHYSICAL REVIEW E | 1994年 / 50卷 / 01期
关键词
D O I
10.1103/PhysRevE.50.285
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider a general class of stochastic models of a turbulent cascade. They are based solely on the classical conceptions of local interactions and energy conservation. We show that such a model must necessarily exhibit strongly non-Gaussian fluctuations on small scales. This intermittent behavior is characterized by multifractal scaling. We develop analytical methods to calculate the anomalous scaling exponents without adjustable parameters and give numerical values for a specific model studied previously.
引用
收藏
页码:285 / 297
页数:13
相关论文
共 23 条
[1]  
[Anonymous], 1984, SPRINGER SERIES SYNE
[2]   HIGH-ORDER VELOCITY STRUCTURE FUNCTIONS IN TURBULENT SHEAR FLOWS [J].
ANSELMET, F ;
GAGNE, Y ;
HOPFINGER, EJ ;
ANTONIA, RA .
JOURNAL OF FLUID MECHANICS, 1984, 140 (MAR) :63-89
[3]  
BELINICHER VI, 1987, ZH EKSP TEOR FIZ, V66, P303
[4]   ON INTERMITTENCY IN A CASCADE MODEL FOR TURBULENCE [J].
BENZI, R ;
BIFERALE, L ;
PARISI, G .
PHYSICA D-NONLINEAR PHENOMENA, 1993, 65 (1-2) :163-171
[5]   VELOCITY PROBABILITY DENSITY-FUNCTIONS OF HIGH REYNOLDS-NUMBER TURBULENCE [J].
CASTAING, B ;
GAGNE, Y ;
HOPFINGER, EJ .
PHYSICA D, 1990, 46 (02) :177-200
[6]   EXTRACTION OF UNDERLYING MULTIPLICATIVE PROCESSES FROM MULTIFRACTALS VIA THE THERMODYNAMIC FORMALISM [J].
CHHABRA, AB ;
JENSEN, RV ;
SREENIVASAN, KR .
PHYSICAL REVIEW A, 1989, 40 (08) :4593-4611
[7]   ANOMALOUS TURBULENT VELOCITY SCALING FROM THE NAVIER-STOKES EQUATION [J].
EGGERS, J ;
GROSSMANN, S .
PHYSICS LETTERS A, 1991, 156 (7-8) :444-449
[8]   INTERMITTENCY IN DYNAMIC-MODELS OF TURBULENCE [J].
EGGERS, J .
PHYSICAL REVIEW A, 1992, 46 (04) :1951-1959
[9]  
Frish U., 1985, TURBULENCE PREDICTAB, P84
[10]  
Gardiner C.W., 1985, HDB STOCHASTIC METHO