INEQUALITIES FOR INCREMENTS OF STOCHASTIC-PROCESSES AND MODULI OF CONTINUITY

被引:39
作者
CSAKI, E [1 ]
CSORGO, M [1 ]
机构
[1] CARLETON UNIV,DEPT MATH & STAT,OTTAWA K1S 5B6,ONTARIO,CANADA
关键词
B VALUED STOCHASTIC PROCESSES; LARGE DEVIATIONS; MODULI OF CONTINUITY; LARGE INCREMENTS; REGULAR VARIATION; GAUSSIAN PROCESSES; L2-VALUED ORNSTEIN-UHLENBECK PROCESSES;
D O I
10.1214/aop/1176989816
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {GAMMA(t), t is-an-element-of R} be a Banach space B-valued stochastic process. Let P be the probability measure generated by GAMMA(.). Assume that GAMMA(.) is P-almost surely continuous with respect to the norm parallel-to parallel-to of B and that there exists a positive nondecreasing function sigma(a), a > 0, such that P{parallel-to GAMMA(t + a) - GAMMA(t)parallel-to greater-than-or-equal-to x-sigma(a)} less-than-or-equal-to K exp(-gamma-x(beta) with some K, gamma, beta > 0. Then, assuming also that sigma(.) is a regularly varying function at zero, or at infinity, with a positive exponent, we prove large deviation results for increments like sup0 less-than-or-equal-to t less-than-or-equal-to T-a sup0 less-than-or-equal-to s less-than-or-equal-to a parallel-to GAMMA(t + s) - GAMMA(t)parallel-to, which we then use to establish moduli of continuity and large increment estimates for GAMMA(.). One of the many applications is to prove moduli of continuity estimates for l2-valued Ornstein-Uhlenbeck processes.
引用
收藏
页码:1031 / 1052
页数:22
相关论文
共 28 条
[1]  
Adler RJ., 1981, GEOMETRY RANDOM FIEL
[2]  
Adler RJ, 1990, INTRO CONTINUITY EXT
[3]   THE MOST VISITED SITE OF BROWNIAN-MOTION AND SIMPLE RANDOM-WALK [J].
BASS, RF ;
GRIFFIN, PS .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 70 (03) :417-436
[4]   BROWNIAN LOCAL TIME APPROXIMATED BY A WIENER SHEET [J].
CSAKI, E ;
CSORGO, M ;
FOLDES, A ;
REVESZ, P .
ANNALS OF PROBABILITY, 1989, 17 (02) :516-537
[5]   ON INFINITE SERIES OF INDEPENDENT ORNSTEIN-UHLENBECK PROCESSES [J].
CSAKI, E ;
CSORGO, M ;
LIN, ZY ;
REVESZ, P .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1991, 39 (01) :25-44
[6]   ON MODULI OF CONTINUITY FOR GAUSSIAN AND L2-NORM SQUARED PROCESSES GENERATED BY ORNSTEIN-UHLENBECK PROCESSES [J].
CSORGO, M ;
LIN, ZY .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1990, 42 (01) :141-158
[7]   HOW BIG ARE THE INCREMENTS OF A WIENER PROCESS [J].
CSORGO, M ;
REVESZ, P .
ANNALS OF PROBABILITY, 1979, 7 (04) :731-737
[8]  
CSORGO M, 1990, LIMIT THEOREMS PROBA, P107
[9]  
Csorgo M., 1981, STRONG APPROXIMATION
[10]  
CSORGO M, 1989, COLL MATH SOC JANOS, V57