On divisibility properties of some differences of Motzkin numbers

被引:0
|
作者
Lengyel, Tamas [1 ]
机构
[1] Occidental Coll, Los Angeles, CA 90041 USA
来源
ANNALES MATHEMATICAE ET INFORMATICAE | 2013年 / 41卷
关键词
Catalan number; Motzkin number; harmonic number; divisibility;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss divisibility properties of some differences of Motzkin numbers M-n. The main tool is the application of various congruences of high prime power moduli for binomial coefficients and Catalan numbers combined with some recurrence relevant to these combinatorial quantities and the use of infinite disjoint covering systems. We find proofs of the fact that, for different settings of a and b, more and more p-ary digits of Mapn+1+b and Mapn+b agree as n grows.
引用
收藏
页码:121 / 136
页数:16
相关论文
共 50 条
  • [1] Some identities on the Catalan, Motzkin and Schroder numbers
    Deng, Eva Y. P.
    Yan, Wei-Jun
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (14) : 2781 - 2789
  • [2] Divisibility properties of hyperharmonic numbers
    H. Göral
    D. C. Sertbaş
    Acta Mathematica Hungarica, 2018, 154 : 147 - 186
  • [3] Divisibility properties of hyperharmonic numbers
    Goral, H.
    Sertbas, D. C.
    ACTA MATHEMATICA HUNGARICA, 2018, 154 (01) : 147 - 186
  • [4] Analytic properties of combinatorial triangles related to Motzkin numbers
    Chen, Xi
    Wang, Yi
    Zheng, Sai-Nan
    DISCRETE MATHEMATICS, 2020, 343 (12)
  • [5] Two explicit formulas for the generalized Motzkin numbers
    Zhao, Jiao-Lian
    Qi, Feng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [6] Two explicit formulas for the generalized Motzkin numbers
    Jiao-Lian Zhao
    Feng Qi
    Journal of Inequalities and Applications, 2017
  • [7] On some divisibility properties of binomial sums
    Sun, Brian Yi
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (09) : 2265 - 2276
  • [8] Several explicit and recursive formulas for generalized Motzkin numbers
    Qi, Feng
    Guo, Bai-Ni
    AIMS MATHEMATICS, 2020, 5 (02): : 1333 - 1345
  • [9] Mean Value Inequalities for Motzkin Numbers
    Agoh, Takashi
    Alzer, Horst
    JOURNAL OF INTEGER SEQUENCES, 2021, 24 (06)
  • [10] Motzkin Numbers: an Operational Point of View
    Artioli, M.
    Dattoli, G.
    Licciardi, S.
    Pagnutti, S.
    JOURNAL OF INTEGER SEQUENCES, 2019, 22 (07)