POSITIVE SOLUTIONS FOR A CLASS OF INFINITE SEMIPOSITONE PROBLEMS INVOLVING THE p- LAPLACIAN OPERATOR

被引:2
作者
Choubin, M. [1 ]
Rasouli, S. H. [2 ]
Ghaemi, M. B. [3 ]
Afrouzi, G. A. [4 ]
机构
[1] Payame Noor Univ, Fac Basic Sci, Dept Math, Tehran, Iran
[2] Babol Univ Technol, Fac Basic Sci, Dept Math, Babol Sar, Iran
[3] Iran Univ Sci & Technol, Dept Math, Tehran, Iran
[4] Mazandaran Univ, Fac Basic Sci, Dept Math, Babol Sar, Iran
来源
MATEMATICHE | 2013年 / 68卷 / 02期
关键词
Positive solution; Infinite semipositone; Sub and supersolutions;
D O I
10.4418/2013.68.2.12
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss the existence of a positive solution to the infinite semipositone problem -Delta(u)(p) = au(p-1) - bu(gamma) - f (u) - c/u(alpha), x is an element of Omega, u = 0; x is an element of partial derivative Omega; where Delta(p) is the p-Laplacian operator, p > 1, g > p 1, a 2 (0, 1), a, b and c are positive constants, Omega is a bounded domain in R-N with smooth boundary partial derivative Omega, and f : [ 0, infinity) -> R is a continuous function such that f (u) -> infinity as u -> infinity. Also we assume that there exist A > 0 and beta > p - 1 such that f (s) < As-beta, for all s > 0. We obtain our result via the method of sub- and supersolutions.
引用
收藏
页码:159 / 166
页数:8
相关论文
共 9 条
[1]   Existence results for superlinear semipositone BVP's [J].
Anuradha, V ;
Hai, DD ;
Shivaji, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (03) :757-763
[2]   Positive solutions for a concave semipositone Dirichlet problem [J].
Castro, A ;
Shivaji, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 31 (1-2) :91-98
[3]   Existence and nonexistence of positive solutions for singular semilinear elliptic boundary value problems [J].
Cui, SB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 41 (1-2) :149-176
[4]  
Drabek -P P., 1999, NONLINEAR DIFFERENTI
[5]  
Hai-R D., 2007, NONLINEAR ANAL, V66, P396
[6]  
Lee-R E. K., 2009, ELECT J DIFFER EQU C, V07, P123
[7]  
Lee-R E. K., 2010, NONLINEAR ANAL, V72, P4475
[8]  
Ramaswamy M, 2007, DIFFER INTEGRAL EQU, V20, P1423
[9]   ON A DIRICHLET PROBLEM WITH A SINGULAR NONLINEARITY [J].
ZHANG, ZJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 194 (01) :103-113