A TOWER OF ARTIN-SCHREIER EXTENSIONS OF FUNCTION-FIELDS ATTAINING THE DRINFELD-VLADUT BOUND

被引:217
作者
GARCIA, A [1 ]
STICHTENOTH, H [1 ]
机构
[1] UNIV ESSEN GESAMTHSCH,FACHBEREICH MATH & INFORMAT 6,D-45117 ESSEN,GERMANY
关键词
D O I
10.1007/BF01884295
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an algebraic function field F having a finite constant field, let g(F) (resp. N(F)) denote the genus of F (resp. the number of places of F of degree one). We construct a tower of function fields F-1 subset of or equal to F-2 subset of or equal to F-3 subset of or equal to... over F-q2 such that the ratio N(F-i)/g(F-i) tends to the Drinfeld-Vladut bound q - 1.
引用
收藏
页码:211 / 222
页数:12
相关论文
共 15 条
  • [11] Stichtenoth H., 1993, ALGEBRAIC FUNCTION F
  • [12] Tsfasman M. A., 1991, ALGEBRAIC GEOMETRIC
  • [13] MODULAR-CURVES, SHIMURA CURVES, AND GOPPA CODES, BETTER THAN VARSHAMOV-GILBERT BOUND
    TSFASMAN, MA
    VLADUT, SG
    ZINK, T
    [J]. MATHEMATISCHE NACHRICHTEN, 1982, 109 : 21 - 28
  • [14] XING CP, 1993, J PURE APPL ALGEBRA, V84, P85
  • [15] [No title captured]