A TOWER OF ARTIN-SCHREIER EXTENSIONS OF FUNCTION-FIELDS ATTAINING THE DRINFELD-VLADUT BOUND

被引:217
作者
GARCIA, A [1 ]
STICHTENOTH, H [1 ]
机构
[1] UNIV ESSEN GESAMTHSCH,FACHBEREICH MATH & INFORMAT 6,D-45117 ESSEN,GERMANY
关键词
D O I
10.1007/BF01884295
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an algebraic function field F having a finite constant field, let g(F) (resp. N(F)) denote the genus of F (resp. the number of places of F of degree one). We construct a tower of function fields F-1 subset of or equal to F-2 subset of or equal to F-3 subset of or equal to... over F-q2 such that the ratio N(F-i)/g(F-i) tends to the Drinfeld-Vladut bound q - 1.
引用
收藏
页码:211 / 222
页数:12
相关论文
共 15 条
  • [1] Goppa V.D., 1981, SOV MATH DOKL, V24, P170
  • [2] GOPPA VD, 1983, MATH USSR IZV, V21, P75
  • [3] IHARA Y, 1981, J FS TOKYO, V28, P721
  • [4] MANIN YI, 1985, J SOVIET MATH, V30, P2611
  • [5] Manin YI., 1981, J FAC SCI U TOKYO IA, V28, P715
  • [6] Moreno C., 1991, CAMBRIDGE TRACTS MAT, V97
  • [7] RUCK HG, 1994, J REINE ANGEW MATH, V457, P155
  • [8] ALGEBRAIC-CURVES OVER F2 WITH MANY RATIONAL-POINTS
    SCHOOF, R
    [J]. JOURNAL OF NUMBER THEORY, 1992, 41 (01) : 6 - 14
  • [9] Serre Jean-Pierre, 1984, ANNUAIRE COLL FRANCE, V128, P79
  • [10] SERRE JP, 1983, CR ACAD SCI I-MATH, V296, P397