Adaptive bacterial colony chemotaxis multi-objective optimisation algorithm

被引:1
|
作者
Meng, Guo-yan [1 ]
Hu, Yu-lan [2 ]
Tian, Yun [2 ]
Zhao, Qing-Shan [2 ]
机构
[1] Xinzhou Teachers Univ, Dept Math, Xinzhou 034000, Shanxi, Peoples R China
[2] Xinzhou Teachers Univ, Dept Comp Sci & Technol, Xinzhou 034000, Shanxi, Peoples R China
关键词
multi-objective optimisation; MOO; adaptive chemotaxis step length; bacterial chemotaxis;
D O I
10.1504/IJCSM.2014.066449
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper focuses on the multi-objective optimisation problem To improve the convergence speed and the diversity of bacterial chemotaxis multi-objective optimisation algorithm (BCMOA) and avoid falling into local minimum, this paper proposes an adaptive bacterial colony chemotaxis multi-objective optimisation (ABCCMO) algorithm. Firstly, fast non-dominated sorting approach is used to initialise the position of all the bacterial. Secondly, this proposed algorithm adopts the adaptive chemotaxis step length. Thirdly, colony intelligent optimisation thought is adopted. Experimental results show that ABCCMO is able to find much better Pareto front solutions.
引用
收藏
页码:336 / 345
页数:10
相关论文
共 50 条
  • [31] Lens design as multi-objective optimisation
    Joseph, Shaine
    Kang, Hyung W.
    Chakraborty, Uday K.
    INTERNATIONAL JOURNAL OF AUTOMATION AND CONTROL, 2011, 5 (03) : 189 - 218
  • [32] Multi-Objective Optimisation of hybrid MSF-RO desalination system using Genetic Algorithm
    Abdulrahim, Hassan K.
    Alasfour, Fuad N.
    INTERNATIONAL JOURNAL OF EXERGY, 2010, 7 (03) : 387 - 424
  • [33] Adaptive Parameters for Multi-Objective Optimisation of Distributed Generation Units in Distribution Systems
    Ramsami, Pamela
    King, Robert T. F. Ah
    2024 1ST INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND ARTIFICIAL INTELLIGENCE, SESAI 2024, 2024, : 143 - +
  • [34] Sensitivity of algorithm parameters and objective function scaling in multi-objective optimisation of water distribution systems
    Mala-Jetmarova, Helena
    Barton, Andrew
    Bagirov, Adil
    JOURNAL OF HYDROINFORMATICS, 2015, 17 (06) : 891 - 916
  • [35] Cloud workflow scheduling algorithm based on multi-objective particle swarm optimisation
    Yin, Hongfeng
    Xu, Baomin
    Li, Weijing
    INTERNATIONAL JOURNAL OF GRID AND UTILITY COMPUTING, 2023, 14 (06) : 583 - 596
  • [36] A particle filtering-based estimation of distribution algorithm for multi-objective optimisation
    Shi X.
    Celik N.
    International Journal of Simulation and Process Modelling, 2016, 11 (3-4) : 176 - 191
  • [37] Multi-Stage, Multi-Objective Process Optimisation
    Yoseph, Azene. T.
    Rajkumar, Roy
    GECCO-2010 COMPANION PUBLICATION: PROCEEDINGS OF THE 12TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2010, : 2063 - 2064
  • [38] Surrogate Assisted Evolutionary Algorithm for Medium Scale Multi-Objective Optimisation Problems
    Ruan, Xiaoran
    Li, Ke
    Derbel, Bilel
    Liefooghe, Arnaud
    GECCO'20: PROCEEDINGS OF THE 2020 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2020, : 560 - 568
  • [39] Multi-objective optimisation of building planning energy saving based on genetic algorithm
    Chen, Ningjing
    Wang, Juanfen
    INFRASTRUCTURE ASSET MANAGEMENT, 2025, 12 (01) : 1 - 14
  • [40] A Feature Selection Method Based on Multi-objective Optimisation with Gravitational Search Algorithm
    Dickson, Bolou Bolou
    Wang, Shengsheng
    Dong, Ruyi
    Wen, Changji
    GEO-INFORMATICS IN RESOURCE MANAGEMENT AND SUSTAINABLE ECOSYSTEM, 2016, 569 : 549 - 558