Adaptive bacterial colony chemotaxis multi-objective optimisation algorithm

被引:1
|
作者
Meng, Guo-yan [1 ]
Hu, Yu-lan [2 ]
Tian, Yun [2 ]
Zhao, Qing-Shan [2 ]
机构
[1] Xinzhou Teachers Univ, Dept Math, Xinzhou 034000, Shanxi, Peoples R China
[2] Xinzhou Teachers Univ, Dept Comp Sci & Technol, Xinzhou 034000, Shanxi, Peoples R China
关键词
multi-objective optimisation; MOO; adaptive chemotaxis step length; bacterial chemotaxis;
D O I
10.1504/IJCSM.2014.066449
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper focuses on the multi-objective optimisation problem To improve the convergence speed and the diversity of bacterial chemotaxis multi-objective optimisation algorithm (BCMOA) and avoid falling into local minimum, this paper proposes an adaptive bacterial colony chemotaxis multi-objective optimisation (ABCCMO) algorithm. Firstly, fast non-dominated sorting approach is used to initialise the position of all the bacterial. Secondly, this proposed algorithm adopts the adaptive chemotaxis step length. Thirdly, colony intelligent optimisation thought is adopted. Experimental results show that ABCCMO is able to find much better Pareto front solutions.
引用
收藏
页码:336 / 345
页数:10
相关论文
共 50 条
  • [1] An improved bacterial colony chemotaxis multi-objective optimisation algorithm
    Zhao, Qing-shan
    Hu, Yu-lan
    Tian, Yun
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2013, 4 (04) : 392 - 401
  • [2] An artificial bee colony algorithm for multi-objective optimisation
    Luo, Jianping
    Liu, Qiqi
    Yang, Yun
    Li, Xia
    Chen, Min-rong
    Cao, Wenming
    APPLIED SOFT COMPUTING, 2017, 50 : 235 - 251
  • [3] A novel multi-objective optimisation algorithm: artificial bee colony in conjunction with bacterial foraging
    Mahmoodabadi, Mohammad Javad
    Taherkhorsandi, Milad
    Maafi, Rahmat Abedzadeh
    Castillo-Villar, Krystel K.
    INTERNATIONAL JOURNAL OF INTELLIGENT ENGINEERING INFORMATICS, 2015, 3 (04) : 369 - 386
  • [4] An improved multi-objective bacteria colony chemotaxis algorithm and convergence analysis
    Lu Zhi-gang
    Zhao Hao
    Xiao Hai-feng
    Wang Hao-rui
    Wang Hui-jing
    APPLIED SOFT COMPUTING, 2015, 31 : 274 - 292
  • [5] Bat algorithm for multi-objective optimisation
    Yang, Xin-She
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2011, 3 (05) : 267 - 274
  • [6] An adaptive multi-objective particle swarm optimisation algorithm based on fitness distance to streamline repository
    Wang, Suyu
    Ma, Dengcheng
    Ren, Ze
    Qu, Yuanyuan
    Wu, Miao
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2022, 20 (04) : 209 - 219
  • [7] A multi-tier adaptive grid algorithm for the evolutionary multi-objective optimisation of complex problems
    Rostami, Shahin
    Shenfield, Alex
    SOFT COMPUTING, 2017, 21 (17) : 4963 - 4979
  • [8] A multi-tier adaptive grid algorithm for the evolutionary multi-objective optimisation of complex problems
    Shahin Rostami
    Alex Shenfield
    Soft Computing, 2017, 21 : 4963 - 4979
  • [9] A multi-objective chemical reaction optimisation algorithm for multi-objective travelling salesman problem
    Bouzoubia, Samira, 1600, Inderscience Enterprises Ltd., 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (06): : 87 - 101
  • [10] A framework for multi-objective optimisation based on a new self-adaptive particle swarm optimisation algorithm
    Tang, Biwei
    Zhu, Zhanxia
    Shin, Hyo-Sang
    Tsourdos, Antonios
    Luo, Jianjun
    INFORMATION SCIENCES, 2017, 420 : 364 - 385