On generalized M-projectively recurrent manifolds

被引:4
作者
De, Uday Chand [1 ]
Pal, Prajjwal [2 ]
机构
[1] Univ Calcutta, Dept Pure Math, 35,Ballygaunge Circular Rd, Kolkata 700019, W Bengal, India
[2] Chakdaha Co Operat Colony Vidyayatan HS, Chakdaha, W Bengal, India
关键词
D O I
10.2478/aupcsm-2014-0007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of the present paper is to study generalized M-projectively recurrent manifolds. Some geometric properties of generalized M-projectively recurrent manifolds have been studied under certain curvature conditions. An application of such a manifold in the theory of relativity has also been shown. Finally, we give an example of a generalized M-projectively recurrent manifold.
引用
收藏
页码:77 / 101
页数:25
相关论文
共 50 条
[41]   On Generalized phi-Recurrent LP-Sasakian Manifolds [J].
Jaiswal, Jai Prakash ;
Ojha, Ram Hit .
KYUNGPOOK MATHEMATICAL JOURNAL, 2009, 49 (04) :779-788
[42]   Symmetric, Semisymmetric, and Recurrent Projectively Euclidean Spaces [J].
Sabykanov A.S. ;
Mikeš J. ;
Peška P. .
Journal of Mathematical Sciences, 2023, 276 (3) :410-416
[43]   Positive projectively flat manifolds are locally conformally flat-Kahler Hopf manifolds [J].
Calamai, Simone .
PURE AND APPLIED MATHEMATICS QUARTERLY, 2021, 17 (03) :1139-1154
[44]   REGULAR PROJECTIVELY ANOSOV FLOWS ON THREE-DIMENSIONAL MANIFOLDS [J].
Asaoka, Masayuki .
ANNALES DE L INSTITUT FOURIER, 2010, 60 (05) :1649-1684
[45]   ON A TYPE OF SEMI-GENERALIZED RECURRENT P-SASAKIAN MANIFOLDS [J].
Singh, Archana ;
Singh, J. P. ;
Kumar, Rajesh .
FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2016, 31 (01) :213-225
[46]   THE THOMAS,T.Y. CONSTRUCTION OF PROJECTIVELY RELATED MANIFOLDS [J].
DHOOGHE, PF .
GEOMETRIAE DEDICATA, 1995, 55 (03) :221-235
[47]   ON GENERALIZED phi-RECURRENT LORENTZIAN alpha-SASAKIAN MANIFOLDS [J].
Rai, Ankita ;
Nartan, Ditruwa .
JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2014, 13 (3-4) :309-315
[48]   On Extended Generalized φ-Recurrent (LCS)2n+1-Manifolds [J].
Yadav, S. K. ;
Suthar, D. L. ;
Hailu, Mebrahtu .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2019, 37 (02) :9-21
[49]   SEMI GENERALIZED phi-RECURRENT TRANS-SASAKIAN MANIFOLDS [J].
Chowdhury, Jagannath ;
Kumar, Rajesh ;
Singh, Jay P. .
FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2016, 31 (04) :863-871
[50]   Asymptotic symmetries of projectively compact order one Einstein manifolds [J].
Borthwick, Jack ;
Herfray, Yannick .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2024, 382 (2267)