On generalized M-projectively recurrent manifolds

被引:4
作者
De, Uday Chand [1 ]
Pal, Prajjwal [2 ]
机构
[1] Univ Calcutta, Dept Pure Math, 35,Ballygaunge Circular Rd, Kolkata 700019, W Bengal, India
[2] Chakdaha Co Operat Colony Vidyayatan HS, Chakdaha, W Bengal, India
关键词
D O I
10.2478/aupcsm-2014-0007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of the present paper is to study generalized M-projectively recurrent manifolds. Some geometric properties of generalized M-projectively recurrent manifolds have been studied under certain curvature conditions. An application of such a manifold in the theory of relativity has also been shown. Finally, we give an example of a generalized M-projectively recurrent manifold.
引用
收藏
页码:77 / 101
页数:25
相关论文
共 50 条
  • [21] On Generalized Ricci Recurrent Manifolds with Applications To Relativity
    Mallick, Sahanous
    De, Avik
    De, Uday Chand
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2013, 83 (02) : 143 - 152
  • [22] ON GENERALIZED phi-RECURRENT KENMOTSU MANIFOLDS
    Chaubey, S. K.
    Prasad, C. S.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2015, 5 (01): : 1 - 9
  • [23] Generalized Ricci-Recurrent Weyl Manifolds
    Gokdag, Zehra Hafizoglu
    Arsan, Guler Gurpinar
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2024, 17 (02): : 378 - 387
  • [24] ON GENERALIZED φ-RECURRENT (LCS)n-MANIFOLDS
    Shaikh, Absos Ali
    Hui, Shyamal Kumar
    ICMS: INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCE, 2010, 1309 : 419 - +
  • [25] ON PROJECTIVELY RELATED WARPED PRODUCT FINSLER MANIFOLDS
    Rezaii, M. M.
    Alipour-Fakhri, Y.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2011, 8 (05) : 953 - 967
  • [26] Riemannian metrics on locally projectively flat manifolds
    Loftin, JC
    AMERICAN JOURNAL OF MATHEMATICS, 2002, 124 (03) : 595 - 609
  • [27] ON A CERTAIN CLASS OF HOMOGENEOUS PROJECTIVELY FLAT MANIFOLDS
    NOMIZU, K
    PINKALL, U
    TOHOKU MATHEMATICAL JOURNAL, 1987, 39 (03) : 407 - 427
  • [28] ON GENERALIZED W3 RECURRENT RIEMANNIAN MANIFOLDS
    Ali, Mohabbat
    Khan, Quddus
    Khan, Aziz Ullah
    Vasiulla, Mohd
    HONAM MATHEMATICAL JOURNAL, 2023, 45 (02): : 325 - 339
  • [29] On generalized recurrent lorentzian para-sasakian manifolds
    Department of Mathematics, Balikesir University, 10145, Çaǧiş, Balikesir, Turkey
    Int. J. Appl. Math. Stat., 2008, DO8 (92-97):
  • [30] On metrics projectively and holomorphically projectively equivalent to metrics of parabolic Riemannian and Ka?hler manifolds
    Mikes, Josef
    Stepanov, Sergey E.
    Tsyganok, Irina I.
    FILOMAT, 2023, 37 (03) : 949 - 956