INTERNAL DEGREES OF FREEDOM IN PERTURBED NONLINEAR KLEIN-GORDON EQUATIONS

被引:0
|
作者
Vazquez, L. [1 ]
Jimenez, S. [2 ]
Bellorin, A. [3 ]
Guerrero, L. E. [4 ]
Gonzalez, J. A. [2 ]
机构
[1] Univ Complutense Madrid, Fac Informat, Dept Matemat Aplicada, E-28040 Madrid, Spain
[2] Univ Complutense Madrid, ETSI Telecomunicac, Dept Matemat Aplicada TT 2, E-28040 Madrid, Spain
[3] Univ Cent Venezuela, Fac Ciencias, Escuela Fis, Caracas 1041 A, Venezuela
[4] Univ Simon Bolivar, Dept Fis, Caracas 1080 A, Venezuela
来源
DIFFERENTIAL EQUATIONS & APPLICATIONS | 2011年 / 3卷 / 04期
关键词
solitons; long-range interactions; power-law behaviors;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the kink solutions to the generalized nonlinear Klein-Gordon equation in the presence of inhomogeneous forces and nonlocal operators. We have found that the number of kink internal modes can depend on the asymptotic behavior of the kink solution for large values of |x|. A list of mechanisms that are capable to create new kink internal modes would contain some of the following items: inhomogeneous perturbations that generate unstable equilibrium positions for the kink, extended de-localized space-dependent perturbations, external perturbations that do not decay exponentially, and nonlocal operators.
引用
收藏
页码:527 / 553
页数:27
相关论文
共 50 条
  • [31] On the Numerical Solution of the Klein-Gordon Equation
    Bratsos, A. G.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2009, 25 (04) : 939 - 951
  • [32] Numerical schemes for general Klein-Gordon equations with Dirichlet and nonlocal boundary conditions
    Martin-Vaquero, Jesus
    Encinas, Ascension Hernandez
    Queiruga-Dios, Araceli
    Gayoso-Martinez, Victor
    Martin del Rey, Angel
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2018, 23 (01): : 50 - 62
  • [33] CONSERVATION LAWS OF COUPLED KLEIN-GORDON EQUATIONS WITH CUBIC AND POWER LAW NONLINEARITIES
    Biswas, Anjan
    Kara, Abdul H.
    Moraru, Luminita
    Bokhari, Ashfaque H.
    Zaman, F. D.
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2014, 15 (02): : 123 - 129
  • [34] Coupled Klein-Gordon equations and energy exchange in two-component systems
    Khusnutdinova, K. R.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2007, 147 : 45 - 72
  • [35] Construction of new wave structures and stability analysis for the nonlinear Klein-Gordon equation
    Tariq, Kalim U.
    Bekir, Ahmet
    Nisar, Sana
    Alp, Murat
    PHYSICA SCRIPTA, 2024, 99 (05)
  • [36] Planar and radial kinks in nonlinear Klein-Gordon models: Existence, stability, and dynamics
    Kevrekidis, P. G.
    Danaila, I
    Caputo, J-G
    Carretero-Gonzalez, R.
    PHYSICAL REVIEW E, 2018, 98 (05)
  • [37] On the Nonlinear Two- and Three-Dimensional Klein-Gordon Equations Allowing Localized Solutions with Beatings of Coupled Oscillators
    Salimov, R. K.
    Salimov, T. R.
    Ekomasov, E. G.
    JETP LETTERS, 2024, 119 (10) : 807 - 811
  • [38] New wave solutions, exact and numerical approximations to the nonlinear Klein-Gordon equation
    Partohaghighi, Mohammad
    Sulaiman, Tukur A.
    Yusuf, Abdullahi
    Inc, Mustafa
    Bayram, Mustafa
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2023, 37 (20):
  • [39] A review of specially discretized Klein-Gordon models
    Bebikhov, Yuri V.
    Shepelev, Igor A.
    Dmitriev, Sergey V.
    SARATOV FALL MEETING 2019: COMPUTATIONS AND DATA ANALYSIS: FROM NANOSCALE TOOLS TO BRAIN FUNCTIONS, 2020, 11459
  • [40] LYAPUNOV-TYPE CHARACTERISATION OF EXPONENTIAL DICHOTOMIES WITH APPLICATIONS TO THE HEAT AND KLEIN-GORDON EQUATIONS
    Chen, Gong
    Jendrej, Jacek
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (10) : 7461 - 7496