INTERNAL DEGREES OF FREEDOM IN PERTURBED NONLINEAR KLEIN-GORDON EQUATIONS

被引:0
|
作者
Vazquez, L. [1 ]
Jimenez, S. [2 ]
Bellorin, A. [3 ]
Guerrero, L. E. [4 ]
Gonzalez, J. A. [2 ]
机构
[1] Univ Complutense Madrid, Fac Informat, Dept Matemat Aplicada, E-28040 Madrid, Spain
[2] Univ Complutense Madrid, ETSI Telecomunicac, Dept Matemat Aplicada TT 2, E-28040 Madrid, Spain
[3] Univ Cent Venezuela, Fac Ciencias, Escuela Fis, Caracas 1041 A, Venezuela
[4] Univ Simon Bolivar, Dept Fis, Caracas 1080 A, Venezuela
来源
DIFFERENTIAL EQUATIONS & APPLICATIONS | 2011年 / 3卷 / 04期
关键词
solitons; long-range interactions; power-law behaviors;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the kink solutions to the generalized nonlinear Klein-Gordon equation in the presence of inhomogeneous forces and nonlocal operators. We have found that the number of kink internal modes can depend on the asymptotic behavior of the kink solution for large values of |x|. A list of mechanisms that are capable to create new kink internal modes would contain some of the following items: inhomogeneous perturbations that generate unstable equilibrium positions for the kink, extended de-localized space-dependent perturbations, external perturbations that do not decay exponentially, and nonlocal operators.
引用
收藏
页码:527 / 553
页数:27
相关论文
共 50 条
  • [1] Internal degrees of freedom, long-range interactions and nonlocal effects in perturbed Klein-Gordon equations
    Gonzalez, J. A.
    Jimenez, S.
    Bellorin, A.
    Guerrero, L. E.
    Vazquez, L.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (03) : 515 - 527
  • [2] Lagrangian formalism in perturbed nonlinear Klein-Gordon equations
    Quintero, NR
    Zamora-Sillero, E
    PHYSICA D-NONLINEAR PHENOMENA, 2004, 197 (1-2) : 63 - 68
  • [3] Solitary waves for the perturbed nonlinear Klein-Gordon equation
    Esfahani, Amin
    APPLIED MATHEMATICS LETTERS, 2011, 24 (02) : 204 - 209
  • [4] Stability of solitary waves in nonlinear Klein-Gordon equations
    Raban, Pablo
    Alvarez-Nodarse, Renato
    Quintero, Niurka R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (46)
  • [5] NUMERICAL TREATMENT OF COUPLED NONLINEAR HYPERBOLIC KLEIN-GORDON EQUATIONS
    Doha, E. H.
    Bhrawy, A. H.
    Baleanu, D.
    Abdelkawy, M. A.
    ROMANIAN JOURNAL OF PHYSICS, 2014, 59 (3-4): : 247 - 264
  • [6] Differential quadrature solution of nonlinear Klein-Gordon and sine-Gordon equations
    Pekmen, B.
    Tezer-Sezgin, M.
    COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (08) : 1702 - 1713
  • [7] INSTABILITY OF THE STANDING WAVES FOR THE NONLINEAR KLEIN-GORDON EQUATIONS IN ONE DIMENSION
    Wu, Yifei
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (06) : 4085 - 4103
  • [9] Dispersive estimates for the Schrodinger and Klein-Gordon equations
    Kopylova, E. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2010, 65 (01) : 95 - 142
  • [10] The G′G-expansion Method for Solving Nonlinear Klein-Gordon Equations
    Zayedand, E. M. E.
    El-Malky, M. A. S.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389