INTERNAL DEGREES OF FREEDOM IN PERTURBED NONLINEAR KLEIN-GORDON EQUATIONS

被引:0
|
作者
Vazquez, L. [1 ]
Jimenez, S. [2 ]
Bellorin, A. [3 ]
Guerrero, L. E. [4 ]
Gonzalez, J. A. [2 ]
机构
[1] Univ Complutense Madrid, Fac Informat, Dept Matemat Aplicada, E-28040 Madrid, Spain
[2] Univ Complutense Madrid, ETSI Telecomunicac, Dept Matemat Aplicada TT 2, E-28040 Madrid, Spain
[3] Univ Cent Venezuela, Fac Ciencias, Escuela Fis, Caracas 1041 A, Venezuela
[4] Univ Simon Bolivar, Dept Fis, Caracas 1080 A, Venezuela
来源
关键词
solitons; long-range interactions; power-law behaviors;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the kink solutions to the generalized nonlinear Klein-Gordon equation in the presence of inhomogeneous forces and nonlocal operators. We have found that the number of kink internal modes can depend on the asymptotic behavior of the kink solution for large values of |x|. A list of mechanisms that are capable to create new kink internal modes would contain some of the following items: inhomogeneous perturbations that generate unstable equilibrium positions for the kink, extended de-localized space-dependent perturbations, external perturbations that do not decay exponentially, and nonlocal operators.
引用
收藏
页码:527 / 553
页数:27
相关论文
共 50 条
  • [1] Internal degrees of freedom, long-range interactions and nonlocal effects in perturbed Klein-Gordon equations
    Gonzalez, J. A.
    Jimenez, S.
    Bellorin, A.
    Guerrero, L. E.
    Vazquez, L.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (03) : 515 - 527
  • [2] Lagrangian formalism in perturbed nonlinear Klein-Gordon equations
    Quintero, NR
    Zamora-Sillero, E
    PHYSICA D-NONLINEAR PHENOMENA, 2004, 197 (1-2) : 63 - 68
  • [3] Solutions of the perturbed Klein-Gordon equations
    Biswas, A.
    Ebadi, G.
    Fessak, M.
    Johnpillai, A. G.
    Johnson, S.
    Krishnan, E. V.
    Yildirim, A.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2012, 36 (A4): : 431 - 452
  • [4] Decay for nonlinear Klein-Gordon equations
    Vladimir Georgiev
    Sandra Lucente
    Nonlinear Differential Equations and Applications NoDEA, 2004, 11 : 529 - 555
  • [5] Decay for nonlinear Klein-Gordon equations
    Georgiev, V
    Lucente, S
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2004, 11 (04): : 529 - 555
  • [6] Asymptotic theory of initial value problems for nonlinear perturbed Klein-Gordon equations
    Gan Zai-hui
    Zhang Jian
    Applied Mathematics and Mechanics, 2005, 26 (7) : 907 - 913
  • [7] Comments on certain degrees of freedom in the Klein-Gordon equation
    Bruce, S.
    de Valdes, J. Diaz
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2006, 121 (03): : 229 - 234
  • [8] ASYMPTOTIC THEORY OF INITIAL VALUE PROBLEMS FOR NONLINEAR PERTURBED KLEIN-GORDON EQUATIONS
    甘在会
    张健
    AppliedMathematicsandMechanics(EnglishEdition), 2005, (07) : 907 - 913
  • [9] Asymptotic theory of initial value problems for nonlinear perturbed Klein-Gordon equations
    Gan, ZH
    Zhang, J
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2005, 26 (07) : 907 - 913