Two existence results for the vortex-wave system

被引:0
|
作者
Miot, Evelyne [1 ]
机构
[1] Univ Paris Sud 11, Lab Math, Bat 425, F-91405 Orsay, France
来源
RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA | 2012年 / 3卷 / 01期
关键词
Two-dimensional Euler equations; incompressible flows; global existence of weak solutions; point vortices; vortex sheets;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The vortex-wave system is a coupling of the two-dimensional Euler equations for the vorticity together with the point vortex system. It was introduced by C. Marchioro and M. Pulvirenti [7, 8] to modelize the evolution of a finite number of concentrated vortices moving in a bounded vorticity background. The purpose of this paper is to provide global existence of a solution in two cases where the background vorticity is not bounded. Part of this work is joint with M. C. Lopes Filho and H. J. Nussenzveig Lopes.
引用
收藏
页码:131 / 146
页数:16
相关论文
共 38 条
  • [21] Bifurcations and Chaos in the Dynamics of Two Point Vortices in an Acoustic Wave
    Vetchanin, E. V.
    Kazakov, A. O.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (04):
  • [22] On the existence of simple waves for two-dimensional non-ideal magneto-hydrodynamics
    Gaurav, Lal Pratap
    Singh, Lal Pratap
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2024, 79 (09): : 939 - 948
  • [23] Equilibrium state of trailing vortices: two-dimensional model of a far-field vortex wake
    Likhachev, OA
    AEROSPACE SCIENCE AND TECHNOLOGY, 2001, 5 (05) : 329 - 338
  • [24] Vortex structures with complex points singularities in two-dimensional Euler equations. New exact solutions
    Tur, Anatoly
    Yanovsky, Vladimir
    Kulik, Konstantin
    PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (13) : 1069 - 1079
  • [25] On the Stability of Discrete Tripole, Quadrupole, Thomson' Vortex Triangle and Square in a Two-layer/Homogeneous Rotating Fluid
    Kurakin, Leonid G.
    Ostrovskaya, Irina V.
    Sokolovskiy, Mikhail A.
    REGULAR & CHAOTIC DYNAMICS, 2016, 21 (03) : 291 - 334
  • [26] GLOBAL-IN-TIME EXISTENCE OF WEAK SOLUTIONS FOR VLASOV-MANEV-FOKKER-PLANCK SYSTEM
    Choi, Young-Pil
    Jeong, In-Jee
    KINETIC AND RELATED MODELS, 2022, : 41 - 53
  • [27] On Stability of the Thomson’s Vortex N-gon in the Geostrophic Model of the Point Vortices in Two-layer Fluid
    Leonid G. Kurakin
    Irina A. Lysenko
    Irina V. Ostrovskaya
    Mikhail A. Sokolovskiy
    Journal of Nonlinear Science, 2019, 29 : 1659 - 1700
  • [28] On Stability of the Thomson's Vortex N-gon in the Geostrophic Model of the Point Vortices in Two-layer Fluid
    Kurakin, Leonid G.
    Lysenko, Irina A.
    Ostrovskaya, Irina, V
    Sokolovskiy, Mikhail A.
    JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (04) : 1659 - 1700
  • [29] Three-vortex quasi-geostrophic dynamics in a two-layer fluid. Part 1. Analysis of relative and absolute motions
    Sokolovskiy, M. A.
    Koshel, K. V.
    Verron, J.
    JOURNAL OF FLUID MECHANICS, 2013, 717 : 232 - 254
  • [30] GLOBAL SOLUTIONS OF A TWO-DIMENSIONAL RIEMANN PROBLEM FOR THE PRESSURE GRADIENT SYSTEM
    Chen, Gui-Qiang G.
    Wang, Qin
    Zhu, Shengguo
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (7-8) : 2475 - 2503