FINDING MINIMUM AREA K-GONS

被引:47
作者
EPPSTEIN, D
OVERMARS, M
ROTE, G
WOEGINGER, G
机构
[1] UNIV UTRECHT,DEPT COMP SCI,3508 TB UTRECHT,NETHERLANDS
[2] GRAZ TECH UNIV,INST MATH,A-8010 GRAZ,AUSTRIA
[3] COLUMBIA UNIV,DEPT COMP SCI,NEW YORK,NY 10027
[4] FREE UNIV BERLIN,INST INFORMAT,FACHBEREICH MATH,W-1000 BERLIN 33,GERMANY
关键词
D O I
10.1007/BF02187823
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a set P of n points in the plane and a number k, we want to find a polygon C with vertices in P of minimum area that satisfies one of the following properties: (1) C is a convex k-gon, (2) C is an empty convex k-gon, or (3) C is the convex hull of exactly k points of P. We give algorithms for solving each of these three problems in time O(kn3). The space complexity is O(n) for k = 4 and O(kn2) for k greater-than-or-equal-to 5. The algorithms are based on a dynamic programming approach. We generalize this approach to polygons with minimum perimeter, polygons with maximum perimeter or area, polygons containing the maximum or minimum number of points, polygons with minimum weight (for some weights added to vertices), etc., in similar time bounds.
引用
收藏
页码:45 / 58
页数:14
相关论文
共 14 条
[1]   GEOMETRIC APPLICATIONS OF A MATRIX-SEARCHING ALGORITHM [J].
AGGARWAL, A ;
KLAWE, MM ;
MORAN, S ;
SHOR, P ;
WILBER, R .
ALGORITHMICA, 1987, 2 (02) :195-208
[2]  
AGGARWAL A, 1989, 5TH P ACM S COMP GEO, P283
[3]  
AGGARWAL A, 1988, MIT18409 LAB COMP SC
[4]  
AVIS D, 1985, 1ST P ACM S COMP GEO, P161
[5]   FINDING EXTREMAL POLYGONS [J].
BOYCE, JE ;
DOBKIN, DP ;
DRYSDALE, RL ;
GUIBAS, LJ .
SIAM JOURNAL ON COMPUTING, 1985, 14 (01) :134-147
[6]  
DOBKIN D, 1988, 4TH P ACM S COMP GEO, P224
[7]   CONSTRUCTING ARRANGEMENTS OF LINES AND HYPERPLANES WITH APPLICATIONS [J].
EDELSBRUNNER, H ;
OROURKE, J ;
SEIDEL, R .
SIAM JOURNAL ON COMPUTING, 1986, 15 (02) :341-363
[8]  
EDELSBRUNNER H, 1987, EATCS MONOGRAPHS THE
[9]  
EPPSTEIN D, 1992, IN PRESS 3RD P ACM S
[10]   SETS WITH NO EMPTY CONVEX 7-GONS [J].
HORTON, JD .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1983, 26 (04) :482-484