m-ISOMETRIC OPERATORS ON BANACH SPACES

被引:26
作者
Ahmed, Ould Ahmed Mahmoud Sid [1 ]
机构
[1] Aljouf Univ, Coll Sci, Math Dept, Aljouf 2014, Saudi Arabia
关键词
m-isometry; m-invertibility; spectrum;
D O I
10.1142/S1793557110000027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the class of m-isometric operators on Banach spaces. This generalizes to Baonach space the m-isometric operators on Hilbert space introduced by Agler and Stankus. We establish some basic properties and we introduce the notion of m-invertibility as a natural generalization of the invertibility on Banach spaces.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 11 条
[1]   M-ISOMETRIC TRANSFORMATIONS OF HILBERT-SPACE .1. [J].
AGLER, J ;
STANKUS, M .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1995, 21 (04) :383-429
[2]  
Badea C, 2005, ACTA SCI MATH, V71, P663
[3]  
CARADUS SR, 1978, QUEENS PAPERS PURE A
[4]  
Cho M., 1992, HOKKAIDO MATH J, V21, P251
[5]  
Conway J., 1990, COURSE FUNCTIONAL AN
[6]   m-isometric commuting tuples of operators on a Hilbert space [J].
Gleason, Jim ;
Richter, Stefan .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 56 (02) :181-196
[7]   Unbounded 2-hyperexpansive operators [J].
Jablonski, ZJ ;
Stochel, J .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2001, 44 :613-629
[8]  
Kato T., 1966, PERTURBATION THEORY, V132, P396
[9]  
Patel S.M., 2002, GLAS MAT, V37, P143
[10]  
Schmoeger Ch., 2004, DEMONSTRATIO MATH, V37, P137