A new Newton-Landweber iteration for nonlinear inverse problems
被引:5
|
作者:
Xiao, Cuie
论文数: 0引用数: 0
h-index: 0
机构:
Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410075, Hunan, Peoples R China
Hunan City Univ, Dept Math & Computat Sci, Yiyang 413000, Peoples R ChinaCent S Univ, Sch Math Sci & Comp Technol, Changsha 410075, Hunan, Peoples R China
Xiao, Cuie
[1
,2
]
Deng, Youjun
论文数: 0引用数: 0
h-index: 0
机构:
Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410075, Hunan, Peoples R ChinaCent S Univ, Sch Math Sci & Comp Technol, Changsha 410075, Hunan, Peoples R China
Deng, Youjun
[1
]
机构:
[1] Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410075, Hunan, Peoples R China
[2] Hunan City Univ, Dept Math & Computat Sci, Yiyang 413000, Peoples R China
In this paper, we propose a new Newton-Landweber iteration for nonlinear inverse problems. We show the convergence of this method without any convergence rate under a weak nonlinearity condition. Also, this iteration will converge and inherit a certain monotonicity of the iteration error like Landweber iteration, if we restrict our inner iteration steps. Furthermore, we obtain optimal convergence rate of the new Newton-Landweber iteration under stronger nonlinearity conditions and parameter choice rules. Numerical experiments have shown some attractive results.