ON THE ZERO MODE PROBLEM OF THE LIGHT-CONE QUANTIZATION

被引:5
作者
HUANG, SZ
LIN, W
机构
[1] Department of Physics, FM 15, University of Washington, Seattle, WA
关键词
D O I
10.1006/aphy.1993.1069
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The light-cone quantization for theories involving arbitrarily interacting scalars is studied systematically. The zero mode, which plays a special role in the light-cone quantization, is treated explicitly. Our arguments utilize a lattice regularization and the constrained path-integral method. We show, to all orders in coupling constants or the loop expansion, that the ghost fields, introduced to enforce the constraints, decouple from all the virtual processes in the infinite-volume limit. The only possibility for the light-cone quantization to deviate from the equal-time quantization is when the interaction is such that the bosonic ghost fields develop expectation values and consequently alter the location of the minimum point of the effective potential. © 1993 Academic Press, Inc.
引用
收藏
页码:248 / 270
页数:23
相关论文
共 34 条
[1]  
BRODSKY SJ, 1992, SLACPUB5811 PREPR
[2]   FEYNMAN RULES AND QUANTUM ELECTRODYNAMICS AT INFINITE MOMENTUM [J].
CHANG, SJ ;
MA, SK .
PHYSICAL REVIEW, 1969, 180 (05) :1506-&
[3]   QUANTUM FIELD-THEORIES IN INFINITE-MOMENTUM FRAME .1. QUANTIZATION OF SCALAR AND DIRAC FIELDS [J].
CHANG, SJ ;
ROOT, RG ;
YAN, TM .
PHYSICAL REVIEW D, 1973, 7 (04) :1133-1146
[4]   EXISTENCE OF A 2ND-ORDER PHASE-TRANSITION IN A 2-DIMENSIONAL PHI4-FIELD THEORY [J].
CHANG, SJ .
PHYSICAL REVIEW D, 1976, 13 (10) :2778-2788
[5]   QUANTUM FIELD-THEORIES IN INFINITE-MOMENTUM FRAME .2. SCATTERING MATRICES OF SCALAR AND DIRAC FIELDS [J].
CHANG, SJ ;
YAN, TM .
PHYSICAL REVIEW D, 1973, 7 (04) :1147-1161
[6]  
Coleman S. R., 1985, ASPECTS SYMMETRY
[7]  
DIRAC PAM, 1949, REV MOD PHYS, V21, P393
[8]   DISCRETIZED LIGHT-CONE QUANTIZATION - THE MASSLESS AND THE MASSIVE SCHWINGER MODEL [J].
ELLER, T ;
PAULI, HC ;
BRODSKY, SJ .
PHYSICAL REVIEW D, 1987, 35 (04) :1493-1507
[9]  
Faddeev L.D., 1969, TEOR MAT FYZ, V1, P3, DOI 10.1007/BF01028566
[10]  
FADDEEV LD, 1970, THEOR MATH PHYS, V1, P1