MAXIMAL SETS OF MUTUALLY ORTHOGONAL LATIN SQUARES .1.

被引:4
作者
EVANS, AB [1 ]
机构
[1] WRIGHT STATE UNIV,DEPT MATH & STAT,DAYTON,OH 45435
关键词
D O I
10.1016/S0195-6698(13)80098-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
One problem of interest in the study of latin squares is that of determining parameter pairs (n, r) for which there exists a maximal set of r mutually orthogonal latin squares of order n. In this paper we find new such parameter pairs by constructing maximal sets of mutually orthogonal latin squares using difference matrices. In the process we generalize known non-existence results for complete mappings, strong complete mappings and Knut Vic designs. © 1991, Academic Press Limited. All rights reserved.
引用
收藏
页码:477 / 482
页数:6
相关论文
共 10 条
[1]   FINITE NETS, .1. NUMERICAL INVARIANTS [J].
BRUCK, RH .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1951, 3 (01) :94-107
[2]   MAXIMAL SETS OF LATIN SQUARES AND PARTIAL TRANSVERSALS [J].
DRAKE, DA .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1977, 1 (02) :143-149
[3]   PARTIAL LAMBDA-GEOMETRIES AND GENERALIZED HADAMARD MATRICES OVER GROUPS [J].
DRAKE, DA .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1979, 31 (03) :617-627
[4]  
EVANS AB, 1991, CONGR NUMER, V70, P241
[5]  
Hall M., 1955, PAC J MATH, V5, P541
[6]   NONEXISTENCE OF KNUT VIK DESIGNS FOR ALL EVEN ORDERS [J].
HEDAYAT, A ;
FEDERER, WT .
ANNALS OF STATISTICS, 1975, 3 (02) :445-447
[7]   COMPLETE SOLUTION TO EXISTENCE AND NONEXISTENCE OF KNUT-VIK DESIGNS AND ORTHOGONAL KNUT-VIK DESIGNS [J].
HEDAYAT, A .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1977, 22 (03) :331-337
[8]   MAXIMAL DIFFERENCE MATRICES OF ORDER LESS-THAN-OR-EQUAL-TO-10 [J].
JUNGNICKEL, D ;
GRAMS, G .
DISCRETE MATHEMATICS, 1986, 58 (02) :199-203
[9]   REPLACEABLE NETS NET COLLINEATIONS AND NET EXTENSIONS [J].
OSTROM, TG .
CANADIAN JOURNAL OF MATHEMATICS, 1966, 18 (03) :666-&
[10]  
[No title captured]