MATHEMATICAL-MODELS FOR HYSTERESIS

被引:365
|
作者
MACKI, JW [1 ]
NISTRI, P [1 ]
ZECCA, P [1 ]
机构
[1] UNIV FLORENCE,FAC INGN,DIPARTIMENTO SISTEMI & INFORMAT,I-50139 FLORENCE,ITALY
关键词
HYSTERESIS; ORDINARY DIFFERENTIAL EQUATIONS; PARTIAL DIFFERENTIAL EQUATIONS; DIFFERENTIAL INCLUSIONS; PERIODIC SOLUTIONS;
D O I
10.1137/1035005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The various existing classical models for hysteresis, Preisach, Ishlinskii, Duhem-Madelung, are surveyed, as well a more modern treatments by contemporary workers. The emphasis is on a clear mathematical description of the formulation and properties of each model. In addition the authors try to make the reader aware of the many open questions in the study of hysteresis.
引用
收藏
页码:94 / 123
页数:30
相关论文
共 50 条
  • [1] Mathematical models for phase change problems with hysteresis effect
    Aiki, T.
    Minchev, E.
    Okazaki, T.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) : E1185 - E1198
  • [2] THE SQUARE-WAVE TYPE FUNCTIONS AS A LIMIT OF SOLUTIONS OF 3 MATHEMATICAL-MODELS
    GODOY, SMS
    DOSREIS, JG
    MATEMATICA APLICADA E COMPUTACIONAL, 1993, 12 (01): : 53 - 66
  • [3] Mathematical analysis and numerical solution of models with dynamic Preisach hysteresis
    Bermudez, A.
    Gomez, D.
    Venegas, P.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 367
  • [4] A phenomenological mathematical model of hysteresis
    Takács, J
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2001, 20 (04) : 1002 - 1014
  • [5] Experimental verification of hysteresis models
    Wlodarski, Z
    Wlodarska, J
    Brykalski, A
    PHYSICA B-CONDENSED MATTER, 2006, 372 (1-2) : 160 - 163
  • [6] Control of biological models with hysteresis
    Timoshin, Sergey A.
    Aiki, Toyohiko
    SYSTEMS & CONTROL LETTERS, 2019, 128 : 41 - 45
  • [7] Cumulative Distribution Functions as Hysteresis Models
    DE Campos, M. F.
    DE Castro, J. A.
    ACTA PHYSICA POLONICA A, 2024, 146 (01) : 20 - 25
  • [8] Hysteresis and precondition of viscoelastic solid models
    Li, Yan
    Xu, Mingyu
    MECHANICS OF TIME-DEPENDENT MATERIALS, 2006, 10 (02) : 113 - 123
  • [9] Hysteresis and precondition of viscoelastic solid models
    Yan Li
    Mingyu Xu
    Mechanics of Time-Dependent Materials, 2006, 10 : 113 - 123
  • [10] RELAXATION IN POPULATION DYNAMICS MODELS WITH HYSTERESIS
    Timoshin, Sergey A.
    Aiki, Toyohiko
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (01) : 693 - 708