SOLITONS FROM A DIRECT POINT-OF-VIEW - PADEONS

被引:2
作者
LAMBERT, F [1 ]
MUSETTE, M [1 ]
机构
[1] VRIJE UNIV BRUSSEL,B-1050 BRUSSELS,BELGIUM
关键词
MATHEMATICAL TECHNIQUES - Matrix Algebra;
D O I
10.1016/0377-0427(86)90030-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A systematic approach to soliton interaction is presented in terms of a particular class of solitary waves (padeons) which are linear fractions with respect to the nonlinearity parameter epsilon . A straightforward generalization of the padeon to higher order rational fractions (multipadeon)yield a natural ansatz for N-solitions. This ansatz produces multisoliton formulas in terms of an 'interaction matrix' A. The structure of the matrix gives some insight into the hidden IST-properties of a familiar set of 'integrable' equations (KdV, Boussinesq, MKdV, sine-Gordon, nonlinear Schroedinger). The analysis suggests a 'padeon' working definition of the soliton, leading to an explicit set of necessary conditions on the padeon equation.
引用
收藏
页码:235 / 249
页数:15
相关论文
共 8 条
  • [1] Eilbeck J. C., 1978, Solitons and Condensed Matter Physics, P28
  • [2] Gantmacher F., 1974, MATRIX THEORY, VII
  • [3] Hirota R., 1980, Solitons, P157, DOI 10.1007/978-3-642-81448-8_5
  • [4] LAMB GL, 1980, ELEMENTS SOLITON THE
  • [5] SOLITONS AND POLES IN THE NONLINEARITY PARAMETER
    LAMBERT, F
    MUSETTE, M
    [J]. ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1981, 10 (04): : 357 - 362
  • [6] LAMBERT F, 1984, PADE APPROXIMATION I, P197
  • [7] ROSALES RR, 1978, STUD APPL MATH, V59, P117
  • [8] ZAKHAROV VE, 1971, SOV PHYS JETP-USSR, V33, P538