A DIMENSION SERIES FOR MULTIVARIATE SPLINES

被引:54
作者
BILLERA, LJ [1 ]
ROSE, LL [1 ]
机构
[1] OHIO STATE UNIV,COLUMBUS,OH 43210
关键词
D O I
10.1007/BF02574678
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For a polyhedral subdivision DELTA of a region in Euclidean d-space, we consider the vector space C(k)r (DELTA) consisting of all C(r) piecewise polynomial functions over DELTA of degree at most k. We consider the formal power series SIGMA-k greater-than-or-equal-to o dim(R) C(k)r(DELTA)-lambda-k, and show, under mild conditions on DELTA, that this always has the form P(lambda)/(1 - lambda)d + 1, where P(lambda) is a polynomial in lambda with integral coefficients which satisfies P(O) = 1, P(1) = f(d)(DELTA), and P'(1) = (r + 1)f(d-1)-degrees-(DELTA). We discuss how the polynomial P(lambda) and bases for spaces C(k)r(DELTA) can be effectively calculated by use of Grobner basis techniques of computational commutative algebra. A further application is given to the theory of hyperplane arrangements.
引用
收藏
页码:107 / 128
页数:22
相关论文
共 35 条
[1]   AN EXPLICIT BASIS FOR C1 QUARTIC BIVARIATE SPLINES [J].
ALFELD, P ;
PIPER, B ;
SCHUMAKER, LL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :891-911
[2]   THE DIMENSION OF BIVARIATE SPLINE SPACES OF SMOOTHNESS R FOR DEGREE D GREATER-THAN-OR-EQUAL-TO 4R+1 [J].
ALFELD, P ;
SCHUMAKER, LL .
CONSTRUCTIVE APPROXIMATION, 1987, 3 (02) :189-197
[3]  
ALFELD P, 1985, P BIENNIAL DUNDEE C
[4]  
Atiyah M. F., 1969, INTRO COMMUTATIVE AL
[5]  
Bayer D., 1982, THESIS HARVARD U
[6]   HOMOLOGY OF SMOOTH SPLINES - GENERIC TRIANGULATIONS AND A CONJECTURE OF STRANG [J].
BILLERA, LJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 310 (01) :325-340
[7]   THE ALGEBRA OF CONTINUOUS PIECEWISE POLYNOMIALS [J].
BILLERA, LJ .
ADVANCES IN MATHEMATICS, 1989, 76 (02) :170-183
[8]  
BILLERA LJ, 1989, GROBNER BASIS METHOD, P93
[9]  
Buchberger B., 1985, MULTIDIMENSIONAL SYS, P184
[10]  
CHUI CK, 1983, MATH COMPUT, V41, P131, DOI 10.1090/S0025-5718-1983-0701629-1