3D Object Segmentation of Point Clouds using Profiling Techniques

被引:0
|
作者
Sithole, G. [1 ]
Mapurisa, W. T. [2 ]
机构
[1] Univ Cape Town, Geomat Div, Cape Town, South Africa
[2] ComputaMaps, Res & Dev, Cape Town, South Africa
来源
SOUTH AFRICAN JOURNAL OF GEOMATICS | 2012年 / 1卷 / 01期
关键词
D O I
暂无
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In the automatic processing of point clouds, higher level information in the form of point segments is required for classification and object detection purposes. Segmentation allows for the definition of these segments. Because of the increasing size of point clouds faster and more reliable segmentation methods are being sought. Various algorithms have been proposed for the segmentation of point clouds. In this paper, an extension of a segmentation approach based on intersecting profiles is proposed. In the presented method, surfaces are considered as a graph of intersecting planar curves. In this graph structure curves intersect at common points and terminate at surface discontinuities. This property of the curves makes it possible to determine point segments by connected components. A method for the detection of curves in the profiles is presented. The algorithm has been tested on terrestrial lidar point clouds.
引用
收藏
页码:60 / 76
页数:17
相关论文
共 50 条
  • [41] Deep Hough Voting for 3D Object Detection in Point Clouds
    Qi, Charles R.
    Litany, Or
    He, Kaiming
    Guibas, Leonidas J.
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 9276 - 9285
  • [42] 3D Object Detection with Normal-map on Point Clouds
    Miao, Jishu
    Hirakawa, Tsubasa
    Yamashita, Takayoshi
    Fujiyoshi, Hironobu
    VISAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 5: VISAPP, 2021, : 569 - 576
  • [43] GECNN for Weakly Supervised Semantic Segmentation of 3D Point Clouds
    He, Zifen
    Zhu, Shouye
    Huang, Ying
    Zhang, Yinhui
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2021, E104D (12) : 2237 - 2243
  • [44] Learning Regional Purity for Instance Segmentation on 3D Point Clouds
    Dong, Shichao
    Lin, Guosheng
    Hung, Tzu-Yi
    COMPUTER VISION - ECCV 2022, PT XXX, 2022, 13690 : 56 - 72
  • [45] Boosting 3D Object Detection by Simulating Multimodality on Point Clouds
    Zheng, Wu
    Hong, Mingxuan
    Jiang, Li
    Fu, Chi-Wing
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 13628 - 13637
  • [46] Compact Covariance Descriptors in 3D Point Clouds for Object Recognition
    Fehr, Duc
    Cherian, Anoop
    Sivalingam, Ravishankar
    Nickolay, Sam
    Morellas, Vassilios
    Papanikolopoulos, Nikolaos
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, : 1793 - 1798
  • [47] Weakly Supervised Point Clouds Transformer for 3D Object Detection
    Tang, Zuojin
    Sun, Bo
    Ma, Tongwei
    Li, Daosheng
    Xu, Zhenhui
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 3948 - 3955
  • [48] 3D Object Detection Algorithm Based on Raw Point Clouds
    Zhang, Dongdong
    Guo, Jie
    Chen, Yang
    Computer Engineering and Applications, 2024, 59 (03) : 209 - 217
  • [49] Optimisation of the PointPillars network for 3D object detection in point clouds
    Stanisz, Joanna
    Lis, Konrad
    Kryjak, Tomasz
    Gorgon, Marek
    2020 SIGNAL PROCESSING - ALGORITHMS, ARCHITECTURES, ARRANGEMENTS, AND APPLICATIONS (SPA), 2020, : 122 - 127
  • [50] Learning Deformable Network for 3D Object Detection on Point Clouds
    Zhang, Wanyi
    Fu, Xiuhua
    Li, Wei
    MOBILE INFORMATION SYSTEMS, 2021, 2021