INEQUALITIES OF FEJER-RIESZ AND HARDY-LITTLEWOOD

被引:3
|
作者
MOCHIZUKI, N
机构
关键词
D O I
10.2748/tmj/1178228078
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:77 / 86
页数:10
相关论文
共 50 条
  • [21] The Fejer-Riesz Inequality for the Besov Spaces
    Wulan, Hasi
    Ye, Fang Qin
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (10) : 1995 - 2004
  • [22] Sharp Exponents for Anisotropic Hardy-Littlewood Type of Inequalities
    Nunez-Alarcon, Daniel
    Serrano-Rodriguez, Diana
    Teixeira, Katiuscia B.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2024, 55 (03):
  • [23] Universal Bounds for the Hardy-Littlewood Inequalities on Multilinear Forms
    Araujo, Gustavo S.
    Camara, Kleber S.
    RESULTS IN MATHEMATICS, 2018, 73 (03)
  • [24] Hardy-Littlewood and Pitt's inequalities for Hausdorff operators
    Dyachenko, M.
    Nursultanov, E.
    Tikhonov, S.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2018, 147 : 40 - 57
  • [25] Hardy-littlewood inequalities for ciesielski-fourier series
    Weisz F.
    Analysis Mathematica, 2005, 31 (3) : 217 - 233
  • [26] On the Constants of the Bohnenblust-Hille and Hardy-Littlewood Inequalities
    Araujo, Gustavo
    Pellegrino, Daniel
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2017, 48 (01): : 141 - 169
  • [27] INEQUALITIES OF FEJER-RIESZ TYPE FOR HOLOMORPHIC-FUNCTIONS ON CERTAIN PRODUCT DOMAINS
    MOCHIZUKI, N
    TOHOKU MATHEMATICAL JOURNAL, 1982, 34 (03) : 367 - 372
  • [28] A NONCOMMUTATIVE VERSION OF THE FEJER-RIESZ THEOREM
    Savchuk, Yurii
    Schmuedgen, Konrad
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (04) : 1243 - 1248
  • [29] Hardy-Littlewood constants
    Conrad, K
    MATHEMATICAL PROPERTIES OF SEQUENCES AND OTHER COMBINATORIAL STRUCTURES, 2003, 726 : 133 - 154
  • [30] ON A PROBLEM OF HARDY-LITTLEWOOD
    STOROZHENKO, EA
    MATHEMATICS OF THE USSR-SBORNIK, 1982, 119 (3-4): : 557 - 577