COMMUNICATION NETWORKS BASED ON PRODUCT GRAPH

被引:5
作者
CATTERMOLE, KW [1 ]
SUMNER, JP [1 ]
机构
[1] UNIV ESSEX,DEPT ELECT ENGN SCI,COLCHESTER CO4 3SQ,ESSEX,ENGLAND
来源
PROCEEDINGS OF THE INSTITUTION OF ELECTRICAL ENGINEERS-LONDON | 1977年 / 124卷 / 01期
关键词
Compendex;
D O I
10.1049/piee.1977.0005
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
ELECTRIC NETWORKS, COMMUNICATION
引用
收藏
页码:38 / 48
页数:11
相关论文
共 50 条
  • [21] Deep feature extraction based on dynamic graph convolutional networks for accelerated hyperspectral image classification
    Liu, Q.
    Dong, Y.
    ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2022, 5 (03) : 139 - 146
  • [22] Exact Wiener Index of the Direct Product of a Path and a Wheel Graph
    Duan, Shi-Jie
    Li, Feng
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [23] Green and Friendly Communication for Sensor Networks
    Xu, Changqiao
    Muntean, Gabriel-Miro
    Zhou, Liang
    Jiang, Xiaohong
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2015,
  • [24] Skeleton-Based Human Action Recognition with Adaptive and Self-Attentive Graph Convolution Networks
    Shahid, Ali Raza
    Yan, Hong
    SSRN, 2023,
  • [25] SERVICE AVAILABILITY OF COMMUNICATION NETWORKS.
    Bonaventura, V.
    Cacopardi, S.
    Decina, M.
    Roveri, A.
    NTC Conference Record - National Telecommunications Conference, 1980, 1 : 1 - 15
  • [26] BROADCAST TIME IN COMMUNICATION-NETWORKS
    FARLEY, AM
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1980, 39 (02) : 385 - 390
  • [27] Detecting Runtime Exceptions by Deep Code Representation Learning with Attention-Based Graph Neural Networks
    School of Computer Science, Fudan University, Shanghai Key Laboratory of Data Science, China
    Proc. - IEEE Int. Conf. Softw. Anal., Evol. Reengineering, SANER, 2022, (373-384):
  • [28] Canonical Representation of Biological Networks Using Graph Convolution
    Case Western Reserve University, Cleveland
    OH, United States
    不详
    ACM-BCB - ACM Conf. Bioinform., Comput. Biol., Health Informatics, 1600,
  • [29] JuryGCN: Quantifying Jackknife Uncertainty on Graph Convolutional Networks
    Kang, Jian
    Zhou, Qinghai
    Tong, Hanghang
    Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2022, : 742 - 752
  • [30] EARTHQUAKE LOCATION AND MAGNITUDE ESTIMATION WITH GRAPH NEURAL NETWORKS
    McBrearty, Ian W.
    Beroza, Gregory C.
    Proceedings - International Conference on Image Processing, ICIP, 2022, : 3858 - 3862