SINGULAR CONTINUOUS SPECTRUM OF HALF-LINE SCHRODINGER OPERATORS WITH POINT INTERACTIONS ON A SPARSE SET

被引:4
作者
Lotoreichik, Vladimir [1 ]
机构
[1] St Petersburg State Univ IT Mech & Opt, Dept Math, Kronverkskiy Pr 49, St Petersburg 197101, Russia
关键词
half-line Schrodinger operators; delta-interactions; delta'-interactions; singular continuous spectrum;
D O I
10.7494/OpMath.2011.31.4.615
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We say that a discrete set X = {x(n)}(n is an element of N0) on the half-line 0 = x(0) < x(1) < x(2) < x(3) < ....< x(n) <...< +infinity is sparse if the distances Delta x(n) = x(n+)1-x(n) between neighbouring points satisfy the condition Delta x(n) /x(n-1)->+infinity. In this paper half-line Schrdinger operators with point delta-and delta'-interactions on a sparse set are considered. Assuming that strengths of point interactions tend to 1 we give simple sufficient conditions for such Schrdinger operators to have non-empty singular continuous spectrum and to have purely singular continuous spectrum, which coincides with R+.
引用
收藏
页码:615 / 628
页数:14
相关论文
共 27 条
[1]  
Albeverio S., 2005, SOLVABLE MODELS QUAN, Vxiv
[2]   Spectral theory of semibounded Sturm-Liouville operators with local interactions on a discrete set [J].
Albeverio, Sergio ;
Kostenko, Aleksey ;
Malamud, Mark .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (10)
[3]   Stability of driven systems with growing gaps, quantum rings, and Wannier ladders [J].
Asch, J ;
Duclos, P ;
Exner, P .
JOURNAL OF STATISTICAL PHYSICS, 1998, 92 (5-6) :1053-1070
[4]   On the number of negative eigenvalues of the Laplacian on a metric graph [J].
Behrndt, Jussi ;
Luger, Annemarie .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (47)
[6]   Singular continuous spectrum for the Laplacian on certain sparse trees [J].
Breuer, Jonathan .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 269 (03) :851-857
[7]   SINGULAR SPECTRUM FOR RADIAL TREES [J].
Breuer, Jonathan ;
Frank, Rupert L. .
REVIEWS IN MATHEMATICAL PHYSICS, 2009, 21 (07) :929-945
[8]  
BUSCHMANN D, 1995, J REINE ANGEW MATH, V467, P169
[9]   Wave function shredding by sparse quantum barriers [J].
Cheon, T ;
Exner, P ;
Seba, P .
PHYSICS LETTERS A, 2000, 277 (01) :1-6
[10]   SPECTRAL THEORY OF ONE-DIMENSIONAL SCHRODINGER-OPERATORS WITH POINT INTERACTIONS [J].
CHRIST, CS ;
STOLZ, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :491-516