EEG Source Localization Using the Inverse Problem Methods

被引:0
|
作者
Khemakhem, Rafik [1 ]
Zouch, Wassim [1 ]
Ben Hamida, Ahmed [1 ]
Taleb-Ahmed, Abdelmalik [2 ]
Feki, Imed [3 ]
机构
[1] ENIS, Traitement Informat & Elect Med, Sfax 3038, Tunisia
[2] Univ Valenciennes, Lab LAMIH UMR CNRS UVHC 8530, F-59300 Famars, France
[3] Ctr Hosp Reg Univ Sfax, Serv Neurol Clin, Sfax 3029, Tunisia
关键词
EEG; Inverse Problem; Localization; sLORETA-FOCUSS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An Electroencephalography (EEG) inverse solution technique can be seen as a way to add spatial information to extra-cranial measurements. In other words, it is a mathematical/physical way to expand the dimensionality of scalp measurements so as to embed intra-cranial spatial information. This paper presents the new sLORETA-FOCUSS approach estimating the current density distribution in the brain. A comparative study of the sLORETA, FOCUSS, sLORETA-FOCUSS and its recursive version is also performed using the ROC curve analysis. The results demonstrate that the recursive sLORETA-FOCUSS method gives good solutions in terms of localization error, simulation time, and reconstruction precision in 3D.
引用
收藏
页码:408 / 415
页数:8
相关论文
共 50 条
  • [21] Dynamic solution to the EEG source localization problem using Kalman Filters and Particle Filters
    Antelis, Javier M.
    Minguez, Javier
    2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, : 77 - 80
  • [22] Combination of Beamforming and Synchronization Methods for Epileptic Source Localization, using Simulated EEG Signals
    Azadehdel, Mahbubeh
    Parsaei, Mohammad Reza
    Boostani, Reza
    BASIC AND CLINICAL NEUROSCIENCE, 2012, 3 (02) : 32 - 46
  • [23] PENALIZED LEAST SQUARES METHODS FOR SOLVING THE EEG INVERSE PROBLEM
    Vega-Hernandez, Mayrim
    Martinez-Montes, Eduardo
    Sanchez-Bornot, Jos M.
    Lage-Castellanos, Agustin
    Valdes-Sosa, Pedro A.
    STATISTICA SINICA, 2008, 18 (04) : 1535 - 1551
  • [24] Evaluation of different cortical source localization methods using simulated and experimental EEG data
    Yao, J
    Dewald, JPA
    NEUROIMAGE, 2005, 25 (02) : 369 - 382
  • [25] Hierarchical Bayesian inference for the EEG inverse problem using realistic FE head models: Depth localization and source separation for focal primary currents
    Lucka, Felix
    Pursiainen, Sampsa
    Burger, Martin
    Wolters, Carsten H.
    NEUROIMAGE, 2012, 61 (04) : 1364 - 1382
  • [26] Reduction in the ill-posedness of the EEG source localization problem
    Mannepalli, Teja
    Routray, Aurobinda
    IECON 2021 - 47TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2021,
  • [27] INVERSE PROBLEM OF ELECTROENCEPHALOGRAPHY - COMPUTING A VIRTUAL DIPOLE SOURCE FROM EEG
    SIDMAN, RD
    SMITH, DB
    ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1973, 34 (07): : 734 - 734
  • [28] Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods
    Gramfort, Alexandre
    Kowalski, Matthieu
    Haemaelaeinen, Matti
    PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (07): : 1937 - 1961
  • [29] A spatio-temporal solution for the EEG/MEG inverse problem using group penalization methods
    Tian, Tian Siva
    Li, Zhimin
    STATISTICS AND ITS INTERFACE, 2011, 4 (04) : 521 - 533
  • [30] Brain source localization using reduced EEG sensors
    Munsif Ali Jatoi
    Nidal Kamel
    Signal, Image and Video Processing, 2018, 12 : 1447 - 1454