SOLUTION OF EIGENVALUE PROBLEMS IN HILBERT SPACES BY A GRADIENT METHOD

被引:6
|
作者
BLUM, EK [1 ]
RODRIGUE, GH [1 ]
机构
[1] UNIV SO CALIF,DEPT MATH,LOS ANGELES,CA 90007
关键词
D O I
10.1016/S0022-0000(74)80056-5
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:220 / 237
页数:18
相关论文
共 50 条
  • [32] ON SOLUTION OF EIGENVALUE PROBLEMS
    DEVOGELA.R
    COMMUNICATIONS OF THE ACM, 1966, 9 (12) : 837 - &
  • [33] A modified generalized version of projected reflected gradient method in Hilbert spaces
    Xiaolin Zhou
    Gang Cai
    Bing Tan
    Qiao-Li Dong
    Numerical Algorithms, 2024, 95 : 117 - 147
  • [34] A modified generalized version of projected reflected gradient method in Hilbert spaces
    Zhou, Xiaolin
    Cai, Gang
    Tan, Bing
    Dong, Qiao-Li
    NUMERICAL ALGORITHMS, 2024, 95 (01) : 117 - 147
  • [35] New extragradient method for a class of equilibrium problems in Hilbert spaces
    Dang Van Hieu
    APPLICABLE ANALYSIS, 2018, 97 (05) : 811 - 824
  • [36] Global Persistence of the Unit Eigenvectors of Perturbed Eigenvalue Problems in Hilbert Spaces: The Odd Multiplicity Case
    Benevieri, Pierluigi
    Calamai, Alessandro
    Furi, Massimo
    Pera, Maria Patrizia
    MATHEMATICS, 2021, 9 (05)
  • [37] An approximation solvability method for nonlocal differential problems in Hilbert spaces
    Benedetti, Irene
    Nguyen Van Loi
    Malaguti, Luisa
    Obukhovskii, Valeri
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (02)
  • [38] HYBRID METHOD FOR GENERALIZED MIXED EQUILIBRIUM PROBLEMS IN HILBERT SPACES
    Rezapour, Shahram
    Wong, Mu-Ming
    Zakeri, Seyyed Hasan
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2021, 22 (08) : 1487 - 1500
  • [39] A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces
    Qin, Xiaolong
    Shang, Meijuan
    Su, Yongfu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (11) : 3897 - 3909
  • [40] AN ITERATIVE METHOD FOR VARIATIONAL INEQUALITY PROBLEMS AND FIXED POINT PROBLEMS IN HILBERT SPACES
    Qin, Xiaolong
    Shang, Meijuan
    Su, Yongfu
    MATEMATICKI VESNIK, 2008, 60 (02): : 107 - 120