SOLUTION OF EIGENVALUE PROBLEMS IN HILBERT SPACES BY A GRADIENT METHOD

被引:6
|
作者
BLUM, EK [1 ]
RODRIGUE, GH [1 ]
机构
[1] UNIV SO CALIF,DEPT MATH,LOS ANGELES,CA 90007
关键词
D O I
10.1016/S0022-0000(74)80056-5
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:220 / 237
页数:18
相关论文
共 50 条
  • [1] NUMERICAL-SOLUTION OF EIGENTUPLE-EIGENVECTOR PROBLEMS IN HILBERT SPACES BY A GRADIENT METHOD
    BLUM, EK
    GELTNER, PB
    NUMERISCHE MATHEMATIK, 1978, 31 (03) : 231 - 246
  • [2] VERIFIED COMPUTATIONS OF EIGENVALUE EXCLOSURES FOR EIGENVALUE PROBLEMS IN HILBERT SPACES
    Watanabe, Yoshitaka
    Nagatou, Kaori
    Plum, Michael
    Nakao, Mitsuhiro T.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (02) : 975 - 992
  • [3] An Iteration Method for Common Solution of a System of Equilibrium Problems in Hilbert Spaces
    Jong Kyu Kim
    Nguyen Buong
    Fixed Point Theory and Applications, 2011
  • [4] An Iteration Method for Common Solution of a System of Equilibrium Problems in Hilbert Spaces
    Kim, Jong Kyu
    Nguyen Buong
    FIXED POINT THEORY AND APPLICATIONS, 2011,
  • [6] The linearization of boundary eigenvalue problems and reproducing kernel Hilbert spaces
    Curgus, B
    Dijksma, A
    Read, T
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 329 (1-3) : 97 - 136
  • [7] Continuous Gradient Projection Method in Hilbert Spaces
    J. Bolte
    Journal of Optimization Theory and Applications, 2003, 119 : 235 - 259
  • [8] Continuous gradient projection method in Hilbert spaces
    Bolte, J
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 119 (02) : 235 - 259
  • [9] A gradient projection method for solving split equality and split feasibility problems in Hilbert spaces
    Phan Tu Vuong
    Strodiot, Jean Jacques
    Van Hien Nguyen
    OPTIMIZATION, 2015, 64 (11) : 2321 - 2341
  • [10] Global Persistence of the Unit Eigenvectors of Perturbed Eigenvalue Problems in Hilbert Spaces
    Benevieri, Pierluigi
    Calamai, Alessandro
    Furi, Massimo
    Pera, Maria Patrizia
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2020, 39 (04): : 475 - 497