Hidden and contact symmetries of ordinary differential equations

被引:37
作者
AbrahamShrauner, B
Leach, PGL
Govinder, KS
Ratcliff, G
机构
[1] UNIV AEGEAN,DEPT MATH,GR-83200 KARLOVASSI,GREECE
[2] UNIV MISSOURI,DEPT MATH & COMP SCI,ST LOUIS,MO 63121
[3] UNIV NATAL,DEPT MATH & APPL MATH,DALBRIDGE 4014,SOUTH AFRICA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1995年 / 28卷 / 23期
关键词
D O I
10.1088/0305-4470/28/23/020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Lie algebra for the maximal contact symmetries of third-order ordinary differential equations (ODES) is examined for type I and II hidden symmetries where the analysis of hidden symmetries for point symmetries is extended to contact symmetries. ODES invariant under the group associated with the ten-dimensional (maximal) Lie algebra may produce type I hidden symmetries for two-parameter subgroups and type II hidden symmetries for certain solvable non-Abelian three-parameter subgroups in the third-order ODES when they are reduced in order. A new class of type II hidden symmetries is recognized in which contact symmetries transform to point symmetries in some reduction paths. Two examples of ODES invariant under subgroups of the ten-parameter group under which y,,, = 0 is invariant demonstrate the new class of type II hidden symmetries.
引用
收藏
页码:6707 / 6716
页数:10
相关论文
共 28 条
[1]  
Abraham-Shrauner B., 1994, CONT MATH, V160, P1
[2]  
Abraham-Shrauner B., 1993, LECT NOTES APPL MATH, V29, P1
[3]   LIE GROUP SYMMETRIES AND INVARIANTS OF THE HENON-HEILES EQUATIONS [J].
ABRAHAMSHRAUNER, B .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (07) :1627-1631
[4]   INTEGRATION OF 2ND-ORDER ORDINARY DIFFERENTIAL-EQUATIONS NOT POSSESSING LIE POINT SYMMETRIES [J].
ABRAHAMSHRAUNER, B ;
GOVINDER, KS ;
LEACH, PGL .
PHYSICS LETTERS A, 1995, 203 (04) :169-174
[5]   LIE TRANSFORMATION GROUP SOLUTIONS OF THE NONLINEAR ONE-DIMENSIONAL VLASOV EQUATION [J].
ABRAHAMSHRAUNER, B .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (06) :1428-1435
[6]   HIDDEN SYMMETRIES AND LINEARIZATION OF THE MODIFIED PAINLEVE-INCE EQUATION [J].
ABRAHAMSHRAUNER, B .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (10) :4809-4816
[7]   HIDDEN SYMMETRIES ASSOCIATED WITH THE PROJECTIVE GROUP OF NONLINEAR 1ST-ORDER ORDINARY DIFFERENTIAL-EQUATIONS [J].
ABRAHAMSHRAUNER, B ;
GUO, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (21) :5597-5608
[8]  
ABRAHAMSHRAUNER B, 1993, MODERN GROUP ANALYSIS: ADVANCED ANALYTICAL AND COMPUTATIONAL METHODS IN MATHEMATICAL PHYSICS, P1
[9]  
ABRAHAMSHRAUNER B, 1994, P IMACS WORLD C, V1, P1
[10]  
ABRAHAMSHRAUNER B, 1995, IMA J APPL MATH