The decomposition of ammonia on a Ni(110) surface with preadsorbed oxygen has been investigated in ultra-high vacuum at room temperature using scanning tunneling microscopy (STM). We propose a reaction model in which the high reactivity observed at low O coverage is ascribed to a direct interaction between the NH3 molecules and the terminating atoms of the short, mobile -Ni-O- added rows which are observed on the surface under these conditions. This model is consistent with the observation that the surface becomes inert at high O coverage. We believe that the present reaction model can also explain results from some other experiments in which preadsorbed oxygen has been found to act as a promoter for dissociation of H-containing species, such as for NH3 on Cu(110) and H2O on Ni(110).