STABLE PATTERNS IN A VISCOUS DIFFUSION EQUATION

被引:127
作者
NOVICKCOHEN, A [1 ]
PEGO, RL [1 ]
机构
[1] UNIV MICHIGAN, DEPT MATH, ANN ARBOR, MI 48109 USA
关键词
PATTERN FORMATION; VISCOSITY; PHASE SEPARATION; DISSIPATIVE SYSTEM; PSEUDOPARABOLIC; NONLINEAR STABILITY;
D O I
10.2307/2001511
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a pseudoparabolic regularization of a forward-backward nonlinear diffusion equation u(t) = DELTA(f(u) + vu(t)), motivated by the problem of phase separation in a viscous binary mixture. The function f is nonmonotone, so there are discontinuous steady state solutions corresponding to arbitrary arrangements of phases. We find that any bounded measurable steady state solution u(x) satisfying f(u) = constant, f'(u(x)) > 0 a.e. is dynamically stable to perturbations in the sense of convergence in measure. In particular, smooth solutions may achieve discontinuous asymptotic states. Furthermore, stable states need not correspond to absolute minimizers of free energy, thus violating Gibbs' principle of stability for phase mixtures.
引用
收藏
页码:331 / 351
页数:21
相关论文
共 18 条
[1]   ON THE PROBLEM OF DIFFUSION IN SOLIDS [J].
AIFANTIS, EC .
ACTA MECHANICA, 1980, 37 (3-4) :265-296
[2]   ASYMPTOTIC-BEHAVIOR AND CHANGES OF PHASE IN ONE-DIMENSIONAL NON-LINEAR VISCOELASTICITY [J].
ANDREWS, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1982, 44 (02) :306-341
[3]   KINETICS OF PHASE-SEPARATION IN THE PRESENCE OF SLOWLY RELAXING STRUCTURAL VARIABLES [J].
BINDER, K ;
FRISCH, HL ;
JACKLE, J .
JOURNAL OF CHEMICAL PHYSICS, 1986, 85 (03) :1505-1512
[4]   ON SPINODAL DECOMPOSITION [J].
CAHN, JW .
ACTA METALLURGICA, 1961, 9 (09) :795-801
[5]   ON A THEORY OF HEAT CONDUCTION INVOLVING 2 TEMPERATURES [J].
CHEN, PJ .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1968, 19 (04) :614-&
[6]  
DIEUDONNE J, 1969, F MODERN ANAL
[7]   DIFFERENTIAL SORPTION IN VISCOELASTIC FLUIDS [J].
DURNING, CJ .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 1985, 23 (09) :1831-1855
[8]  
JACKLE J, 1986, J CHEM PHYS, V85, P1621, DOI 10.1063/1.451204
[9]   RELAXATION OF CHEMICAL-POTENTIAL AND A GENERALIZED DIFFUSION EQUATION [J].
JACKLE, J ;
FRISCH, HL .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 1985, 23 (04) :675-682
[10]   EXISTENCE AND UNIQUENESS IN NONCLASSICAL DIFFUSION [J].
KUTTLER, K ;
AIFANTIS, EC .
QUARTERLY OF APPLIED MATHEMATICS, 1987, 45 (03) :549-560