Properties of hierarchical Archimedean copulas

被引:29
作者
Okhrin, Ostap [1 ]
Okhrin, Yarema [2 ]
Schmid, Wolfgang [3 ]
机构
[1] Humboldt Univ, Inst Stat & Econometr, D-10099 Berlin, Germany
[2] Univ Augsburg, Dept Stat, D-86135 Augsburg, Germany
[3] European Univ Viadrina, Dept Stat, D-15230 Frankfurt, Oder, Germany
关键词
copula; multivariate distribution; Archimedean copula; stochastic ordering; hierarchical copula;
D O I
10.1524/strm.2013.1071
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we analyse the properties of hierarchical Archimedean copulas. This class is a generalisation of the Archimedean copulas and allows for general non-exchangeable dependency structures. We show that the structure of the copula can be uniquely recovered from all bivariate margins. We derive the distribution of the copula values, which is particularly useful for tests and constructing confidence intervals. Furthermore, we analyse dependence orderings, multivariate dependence measures, and extreme value copulas. We pay special attention to the tail dependencies and derive several tail dependence indices for general hierarchical Archimedean copulas.
引用
收藏
页码:21 / 53
页数:33
相关论文
共 50 条
  • [1] On the structure and estimation of hierarchical Archimedean copulas
    Okhrin, Ostap
    Okhrin, Yarema
    Schmid, Wolfgang
    JOURNAL OF ECONOMETRICS, 2013, 173 (02) : 189 - 204
  • [2] Hierarchical Archimedean Copulas for MATLAB and Octave: The HACopula Toolbox
    Gorecki, Jan
    Hofert, Marius
    Holena, Martin
    JOURNAL OF STATISTICAL SOFTWARE, 2020, 93 (10): : 1 - 36
  • [3] MODELING DEPENDENCE BETWEEN LOSS TRIANGLES WITH HIERARCHICAL ARCHIMEDEAN COPULAS
    Abdallah, Anas
    Boucher, Jean-Philippe
    Cossette, Helene
    ASTIN BULLETIN, 2015, 45 (03): : 577 - 599
  • [4] From Archimedean to Liouville copulas
    McNeil, Alexander J.
    Neslehova, Johanna
    JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (08) : 1772 - 1790
  • [5] Simulation algorithms for hierarchical Archimedean copulas beyond the completely monotone case
    Mai, Jan-Frederik
    DEPENDENCE MODELING, 2019, 7 (01): : 202 - 214
  • [6] Convergence of Archimedean copulas
    Charpentier, Arthur
    Segers, Johan
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (04) : 412 - 419
  • [7] Dependence and order in families of Archimedean copulas
    Nelsen, RB
    JOURNAL OF MULTIVARIATE ANALYSIS, 1997, 60 (01) : 111 - 122
  • [8] A generalization of the Archimedean class of bivariate copulas
    Durante, Fabrizio
    Quesada-Molina, Jose Juan
    Sempi, Carlo
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2007, 59 (03) : 487 - 498
  • [9] Invariant dependence structures and Archimedean copulas
    Durante, Fabrizio
    Jaworski, Piotr
    Mesiar, Radko
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (12) : 1995 - 2003
  • [10] A Generalization of the Archimedean Class of Bivariate Copulas
    Fabrizio Durante
    José Juan Quesada-Molina
    Carlo Sempi
    Annals of the Institute of Statistical Mathematics, 2007, 59 : 487 - 498