Sparse Signal Recovery from Fixed Low-Rank Subspace via Compressive Measurement

被引:2
|
作者
He, Jun [1 ]
Gao, Ming-Wei [1 ]
Zhang, Lei [2 ]
Wu, Hao [3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Elect & Informat Engn, 219 Ningliu Rd, Nanjing 210044, Jiangsu, Peoples R China
[2] Southeast Univ, Sch Instrumental Sci & Engn, Nanjing 210096, Jiangsu, Peoples R China
[3] Yunnan Univ, Sch Informat Sci & Engn, Kunming 650091, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
compressive sensing; sparse signal recovery; greedy algorithm; video surveillance;
D O I
10.3390/a6040871
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper designs and evaluates a variant of CoSaMP algorithm, for recovering the sparse signal s from the compressive measurement nu = A(Uw + s) given a fixed lowrank subspace spanned by U. Instead of firstly recovering the full vector then separating the sparse part from the structured dense part, the proposed algorithm directly works on the compressive measurement to do the separation. We investigate the performance of the algorithm on both simulated data and video compressive sensing. The results show that for a fixed low-rank subspace and truly sparse signal the proposed algorithm could successfully recover the signal only from a few compressive sensing (CS) measurements, and it performs better than ordinary CoSaMP when the sparse signal is corrupted by additional Gaussian noise.
引用
收藏
页码:871 / 882
页数:12
相关论文
共 50 条
  • [1] Sparse subspace clustering via Low-Rank structure propagation
    Sui, Yao
    Wang, Guanghui
    Zhang, Li
    PATTERN RECOGNITION, 2019, 95 : 261 - 271
  • [2] Survey of subspace learning via low-rank sparse representation
    Wu J.
    Chen Z.
    Meng M.
    Xie J.
    1600, Huazhong University of Science and Technology (49): : 1 - 19
  • [3] Sparse and low-rank matrices recovery from incomplete and noisy measurement
    Yang, Zhenzhen
    Yang, Zhen
    Journal of Computational Information Systems, 2013, 9 (19): : 7703 - 7710
  • [4] RFI-Radar Signal Separation via Simultaneous Low-rank and Sparse Recovery
    Nguyen, Lam H.
    Tran, Trac D.
    2016 IEEE RADAR CONFERENCE (RADARCONF), 2016, : 777 - 781
  • [5] Discriminative Transfer Subspace Learning via Low-Rank and Sparse Representation
    Xu, Yong
    Fang, Xiaozhao
    Wu, Jian
    Li, Xuelong
    Zhang, David
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (02) : 850 - 863
  • [6] Multimodal sparse and low-rank subspace clustering
    Abavisani, Mahdi
    Patel, Vishal M.
    INFORMATION FUSION, 2018, 39 : 168 - 177
  • [7] Sparse subspace clustering with low-rank transformation
    Xu, Gang
    Yang, Mei
    Wu, Qiufeng
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (07): : 3141 - 3154
  • [8] Low-Rank and Structured Sparse Subspace Clustering
    Zhang, Junjian
    Li, Chun-Guang
    Zhang, Honggang
    Guo, Jun
    2016 30TH ANNIVERSARY OF VISUAL COMMUNICATION AND IMAGE PROCESSING (VCIP), 2016,
  • [9] Low-Rank Sparse Subspace for Spectral Clustering
    Zhu, Xiaofeng
    Zhang, Shichao
    Li, Yonggang
    Zhang, Jilian
    Yang, Lifeng
    Fang, Yue
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2019, 31 (08) : 1532 - 1543
  • [10] Sparse subspace clustering with low-rank transformation
    Gang Xu
    Mei Yang
    Qiufeng Wu
    Neural Computing and Applications, 2019, 31 : 3141 - 3154