UNDERSTANDING THE METROPOLIS-HASTINGS ALGORITHM

被引:2509
作者
CHIB, S [1 ]
GREENBERG, E [1 ]
机构
[1] WASHINGTON UNIV,DEPT ECON,ST LOUIS,MO 63130
关键词
GIBBS SAMPLING; MARKOV CHAIN MONTE CARLO; MULTIVARIATE DENSITY SIMULATION; REVERSIBLE MARKOV CHAINS;
D O I
10.2307/2684568
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide a detailed, introductory exposition of the Metropolis-Hastings algorithm, a powerful Markov chain method to simulate multivariate distributions. A simple, intuitive derivation of this method is given along with guidance on implementation. Also discussed are two applications of the algorithm, one for implementing acceptance-rejection sampling when a blanketing function is not available and the other for implementing the algorithm with block-at-a-time scans. In the latter situation, many different algorithms, including the Gibbs sampler, are shown to be special cases of the Metropolis-Hastings algorithm. The methods are illustrated with examples.
引用
收藏
页码:327 / 335
页数:9
相关论文
共 24 条
[1]  
[Anonymous], 1994, MARKOV CHAINS STOCHA
[2]  
BHATTACHARYA RN, 1900, STOCHASTIC PROCESSES
[3]  
Billingsley P., 1985, PROBABILITY MEASURE
[4]  
Box G.E.P., 1976, TIME SERIES ANAL
[5]   EXPLAINING THE GIBBS SAMPLER [J].
CASELLA, G ;
GEORGE, EI .
AMERICAN STATISTICIAN, 1992, 46 (03) :167-174
[6]   BAYES INFERENCE IN REGRESSION-MODELS WITH ARMA (P, Q) ERRORS [J].
CHIB, S ;
GREENBERG, E .
JOURNAL OF ECONOMETRICS, 1994, 64 (1-2) :183-206
[7]  
CHIB S, 1993, IN PRESS ECONOMETRIC
[8]  
Dagpunar J., 1988, PRINCIPLES RANDOM VA
[9]   SAMPLING-BASED APPROACHES TO CALCULATING MARGINAL DENSITIES [J].
GELFAND, AE ;
SMITH, AFM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) :398-409
[10]  
GELMAN A, 1992, COMPUT SCI STAT, V24, P433