GIBBS SAMPLING;
MARKOV CHAIN MONTE CARLO;
MULTIVARIATE DENSITY SIMULATION;
REVERSIBLE MARKOV CHAINS;
D O I:
10.2307/2684568
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We provide a detailed, introductory exposition of the Metropolis-Hastings algorithm, a powerful Markov chain method to simulate multivariate distributions. A simple, intuitive derivation of this method is given along with guidance on implementation. Also discussed are two applications of the algorithm, one for implementing acceptance-rejection sampling when a blanketing function is not available and the other for implementing the algorithm with block-at-a-time scans. In the latter situation, many different algorithms, including the Gibbs sampler, are shown to be special cases of the Metropolis-Hastings algorithm. The methods are illustrated with examples.