NEW LOWER BOUNDS FOR BINARY COVERING CODES

被引:8
作者
LI, DF [1 ]
CHEN, W [1 ]
机构
[1] ACAD SINICA, INST SYST SCI, BEIJING 100080, PEOPLES R CHINA
关键词
COVERING CODE; MULTIEXCESS; R-EXCESS; LINEAR INEQUALITY;
D O I
10.1109/18.335963
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Lower bounds for K(n,R), the minimal number of codewords of any binary code of length n and covering radius R, are improved. The definition of multiexcess is introduced. A technique combining van Wee's method and linear inequalities for covering codes is used. A revised table for K(n,R) (n less-than-or-equal-to 33, R less-than-or-equal-to 10) is given.
引用
收藏
页码:1122 / 1129
页数:8
相关论文
共 32 条
  • [1] Bannai E., 1984, ALGEBRAIC COMBINATOR
  • [2] INTEGER-MAKING THEOREMS
    BECK, J
    FIALA, T
    [J]. DISCRETE APPLIED MATHEMATICS, 1981, 3 (01) : 1 - 8
  • [3] SHORT CODES WITH A GIVEN COVERING RADIUS
    BRUALDI, RA
    PLESS, VS
    WILSON, RM
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (01) : 99 - 109
  • [4] INEQUALITIES FOR COVERING CODES
    CALDERBANK, AR
    SLOANE, NJA
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (05) : 1276 - 1280
  • [5] LOWER BOUNDS FOR Q-ARY COVERING CODES
    CHEN, W
    HONKALA, IS
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (03) : 664 - 671
  • [6] CLAYTON RF, 1990, CODING THEORY DESI 1, P51
  • [7] CLAYTON RF, 1987, THESIS U CALIFORNIA
  • [8] FURTHER RESULTS ON THE COVERING RADIUS OF CODES
    COHEN, GD
    LOBSTEIN, AC
    SLOANE, NJA
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1986, 32 (05) : 680 - 694
  • [9] COVERING RADIUS - SURVEY AND RECENT RESULTS
    COHEN, GD
    KARPOVSKY, MG
    MATTSON, HF
    SCHATZ, JR
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1985, 31 (03) : 328 - 343
  • [10] Erdos P., 1963, PUBL MATH-DEBRECEN, V10, P10