REGRESSION RANK SCORES AND REGRESSION QUANTILES

被引:146
作者
GUTENBRUNNER, C [1 ]
JURECKOVA, J [1 ]
机构
[1] CHARLES UNIV, DEPT PROBABIL & STAT, CS-18600 PRAGUE 8, CZECHOSLOVAKIA
关键词
REGRESSION QUANTILE; REGRESSION RANK-SCORE; TRIMMED LEAST-SQUARES ESTIMATOR; L-STATISTIC; LINEAR RANK STATISTIC;
D O I
10.1214/aos/1176348524
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that regression quantiles, which could be computed as solutions of a linear programming problem, and the solutions of the corresponding dual problem, which we call the regression rank-scores, generalize the duality of order statistics and of ranks from the location to the linear model. Noting this fact, we study the regression quantile and regression rank-score processes in the heteroscedastic linear regression model, obtaining some new estimators and interesting comparisons with existing estimators.
引用
收藏
页码:305 / 330
页数:26
相关论文
共 48 条
[31]   Minimum risk equivariant estimator in linear regression model [J].
Jureckova, Jana ;
Picek, Jan .
STATISTICS & RISK MODELING, 2009, 27 (01) :37-54
[32]   ANALYSIS OF DEPENDENTLY CENSORED DATA BASED ON QUANTILE REGRESSION [J].
Ji, Shuang ;
Peng, Limin ;
Li, Ruosha ;
Lynn, Michael J. .
STATISTICA SINICA, 2014, 24 (03) :1411-1432
[33]   Quantile regression methods for censored gap time data [J].
Cheng, Jung-Yu ;
Tzeng, Shinn-Jia .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (17) :5154-5165
[34]   Local linear quantile regression with truncated and dependent data [J].
Wang, Jiang-Feng ;
Ma, Wei-Min ;
Fan, Guo-Liang ;
Wen, Li-Min .
STATISTICS & PROBABILITY LETTERS, 2015, 96 :232-240
[35]   Quantile-Regression Inference With Adaptive Control of Size [J].
Escanciano, J. C. ;
Goh, S. C. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2019, 114 (527) :1382-1393
[36]   Self-consistent estimation of censored quantile regression [J].
Peng, Limin .
JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 105 (01) :368-379
[37]   Fast Nonparametric Quantile Regression With Arbitrary Smoothing Methods [J].
Oh, Hee-Seok ;
Lee, Thomas C. M. ;
Nychka, Douglas W. .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2011, 20 (02) :510-526
[38]   Trimmed least squares estimator as best trimmed linear conditional estimator for linear regression model [J].
Chen, LA ;
Thompson, P .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1998, 27 (07) :1835-1849
[39]   Cure Rate Quantile Regression for Censored Data With a Survival Fraction [J].
Wu, Yuanshan ;
Yin, Guosheng .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (504) :1517-1531
[40]   Smoothed and Corrected Score Approach to Censored Quantile Regression With Measurement Errors [J].
Wu, Yuanshan ;
Ma, Yanyuan ;
Yin, Guosheng .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (512) :1670-1683