REGRESSION RANK SCORES AND REGRESSION QUANTILES

被引:146
作者
GUTENBRUNNER, C [1 ]
JURECKOVA, J [1 ]
机构
[1] CHARLES UNIV, DEPT PROBABIL & STAT, CS-18600 PRAGUE 8, CZECHOSLOVAKIA
关键词
REGRESSION QUANTILE; REGRESSION RANK-SCORE; TRIMMED LEAST-SQUARES ESTIMATOR; L-STATISTIC; LINEAR RANK STATISTIC;
D O I
10.1214/aos/1176348524
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that regression quantiles, which could be computed as solutions of a linear programming problem, and the solutions of the corresponding dual problem, which we call the regression rank-scores, generalize the duality of order statistics and of ranks from the location to the linear model. Noting this fact, we study the regression quantile and regression rank-score processes in the heteroscedastic linear regression model, obtaining some new estimators and interesting comparisons with existing estimators.
引用
收藏
页码:305 / 330
页数:26
相关论文
共 30 条
[1]   RANK-TESTS OF SUB-HYPOTHESES IN GENERAL LINEAR-REGRESSION [J].
ADICHIE, JN .
ANNALS OF STATISTICS, 1978, 6 (05) :1012-1026
[2]  
ANTOCH J, 1985, COMPUTATIONAL STATIS, V4, P329
[3]  
BASSETT G, 1982, J AM STAT ASSOC, V77, P407
[4]   SOME ANALOGS TO LINEAR COMBINATIONS OF ORDER STATISTICS IN LINEAR MODEL [J].
BICKEL, PJ .
ANNALS OF STATISTICS, 1973, 1 (04) :597-616
[5]  
BICKEL PJ, 1967, 5TH P BERK S MATH ST, V1, P575
[6]   RANK-ORDER TESTS FOR THE PARALLELISM OF SEVERAL REGRESSION SURFACES [J].
CHIANG, CY ;
PURI, ML .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1984, 10 (01) :43-57
[7]   MALLOWS-TYPE BOUNDED-INFLUENCE-REGRESSION TRIMMED MEANS [J].
DEJONGH, PJ ;
DEWET, T ;
WELSH, AH .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (403) :805-810
[8]   UNBIASED L1 AND L-INFINITY ESTIMATION [J].
FAREBROTHER, RW .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1985, 14 (08) :1941-1962
[9]  
GUTENBRUNNER C, 1990, UNPUB TESTS LINEAR H
[10]  
GUTENBRUNNER C, 1986, THESIS U FREIBURG