REGRESSION RANK SCORES AND REGRESSION QUANTILES

被引:141
|
作者
GUTENBRUNNER, C [1 ]
JURECKOVA, J [1 ]
机构
[1] CHARLES UNIV, DEPT PROBABIL & STAT, CS-18600 PRAGUE 8, CZECHOSLOVAKIA
来源
ANNALS OF STATISTICS | 1992年 / 20卷 / 01期
关键词
REGRESSION QUANTILE; REGRESSION RANK-SCORE; TRIMMED LEAST-SQUARES ESTIMATOR; L-STATISTIC; LINEAR RANK STATISTIC;
D O I
10.1214/aos/1176348524
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that regression quantiles, which could be computed as solutions of a linear programming problem, and the solutions of the corresponding dual problem, which we call the regression rank-scores, generalize the duality of order statistics and of ranks from the location to the linear model. Noting this fact, we study the regression quantile and regression rank-score processes in the heteroscedastic linear regression model, obtaining some new estimators and interesting comparisons with existing estimators.
引用
收藏
页码:305 / 330
页数:26
相关论文
共 48 条