FERMION - GRAND-UNIFIED-MONOPOLE SYSTEMS AS EXACTLY SOLVABLE TWO-DIMENSIONAL QUANTUM-FIELD-THEORY PROBLEMS

被引:2
|
作者
CRAIGIE, NS
机构
来源
PHYSICAL REVIEW D | 1986年 / 33卷 / 10期
关键词
D O I
10.1103/PhysRevD.33.2930
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
引用
收藏
页码:2930 / 2943
页数:14
相关论文
共 50 条
  • [41] Universality of certain nonrenormalizable contributions in two-dimensional quantum field theory
    Caselle, M
    Pinn, K
    PHYSICAL REVIEW D, 1996, 54 (08): : 5179 - 5184
  • [42] Map from one-dimensional quantum field theory to quantum chaos on a two-dimensional torus
    Prosen, T
    PHYSICAL REVIEW E, 1999, 60 (02): : 1658 - 1663
  • [43] SOME RECURRENCE RELATIONS AND EINSTEIN CONNECTION IN TWO-DIMENSIONAL UNIFIED FIELD-THEORY
    CHUNG, KT
    CHO, CH
    ACTA MATHEMATICA HUNGARICA, 1983, 41 (1-2) : 47 - 52
  • [44] Map from one-dimensional quantum field theory to quantum chaos on a two-dimensional torus
    Prosen, Tomaz
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 60 (2 A):
  • [45] Unconventional quantum Hall effects in two-dimensional massive spin-1 fermion systems
    Xu, Yong
    Duan, L-M.
    PHYSICAL REVIEW B, 2017, 96 (15)
  • [46] Two-dimensional pair-interacting hole gas thermodynamics: Exactly solvable Moshinsky model for lens-shaped quantum dots
    Mkrtchyan, M. A.
    Mamasakhlisov, Y. S.
    Hayrapetyan, D. B.
    Baskoutas, S.
    Sarkisyan, H. A.
    HELIYON, 2024, 10 (15)
  • [47] Effective field theory with a θ-vacua structure for two-dimensional spin systems
    Tanaka, Akihiro
    Hu, Xiao
    PHYSICAL REVIEW B, 2006, 74 (14):
  • [48] THE MODELS OF TWO-DIMENSIONAL CONFORMAL QUANTUM-FIELD THEORY WITH ZN SYMMETRY
    FATEEV, VA
    LYKYANOV, SL
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1988, 3 (02): : 507 - 520
  • [49] Effective mass theory of a two-dimensional quantum dot in the presence of magnetic field
    Himanshu Asnani
    Raghu Mahajan
    Praveen Pathak
    Vijay A. Singh
    Pramana, 2009, 73 : 573 - 580
  • [50] States and amplitudes for finite regions in a two-dimensional Euclidean quantum field theory
    Colosi, Daniele
    Oeckl, Robert
    JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (07) : 764 - 780