THE MARKOV EQUATION X2+Y2+Z2=AXYZ OVER QUADRATIC IMAGINARY FIELDS

被引:15
作者
SILVERMAN, JH [1 ]
机构
[1] BROWN UNIV,DEPT MATH,PROVIDENCE,RI 02912
基金
美国国家科学基金会;
关键词
D O I
10.1016/0022-314X(90)90105-Z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Markoff equation Ma: X2 + Y2 + Z2 = aXYZ has been extensively studied. Markoff showed that M3(Z) is generated from (1, 1, 1) by automorphisms, and Zagier gave a precise asymptotic formula for the number of points in Ma(Z) with height less than H. In this paper we prove similar results for Ma(R), where R is an order in a quadratic imaginary field K. In particular, we show that if K ≠ Q(i), and if |a| ≥ 3, then the only solutions come from Markoff's solution. (If |a| > 3, there are no solutions.) And for R = Z[i] we give an asymptotic formula similar to Zagier's result. © 1990.
引用
收藏
页码:72 / 104
页数:33
相关论文
共 5 条
  • [1] Cassels J.W.S., 1957, INTRO DIOPHANTINE AP
  • [2] COHN H, 1981, RIEMANN SURFACES REL, P73
  • [3] EVERTSE JH, 1984, COMPOS MATH, V53, P225
  • [4] Markoff A., 1880, 2 MATH ANN, V17, P379, DOI DOI 10.1007/BF01446234
  • [5] ZAGIER D, 1982, MATH COMPUT, V39, P709, DOI 10.1090/S0025-5718-1982-0669663-7