Adsorptive removal of nickel from aqueous solutions by activated carbons from doum seed (Hyphaenethebaica) coat

被引:78
|
作者
El-Sadaawy, Manal [1 ]
Abdelwahab, Ola [1 ]
机构
[1] Natl Inst Oceanog & Fisheries, Environm Div, Alexandria, Egypt
关键词
Adsorption; Nickel (II); Activated carbon; Equilibrium isotherm; Error analysis;
D O I
10.1016/j.aej.2014.03.014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present study investigates the possibility of using low cost agriculture waste as doum-palm seed coat for the removal of nickel ions from aqueous solutions. Two activated carbons had been prepared from raw doum-palm seed coat (DACI and DACII); as well, the raw material was used as an adsorbent (RD). Batch adsorption experiments were performed as a function of pH of solution, initial nickel ions concentration, dose of adsorbent and contact time. Adsorption data were modeled using Langmuir, Freundlich, Temkin and D-R Models. Different error analysis conforms that the isotherm data followed Freundlich models for all adsorbents. Adsorption kinetic data were tested using pseudo-first order, pseudo-second order and Elovich model. Adsorption mechanism was investigated using the intra-particle diffusion model. Diffusion coefficients were calculated using the film and intraparticle diffusion models. Kinetic studies showed that the adsorption of Ni (2+) ions onto RD, DACI and DACII followed pseudo-second order kinetic model, and indicates that the intra-particle diffusion controls the rate of adsorption but it is not the rate limiting step. (C) 2014 Production and hosting by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria University.
引用
收藏
页码:399 / 408
页数:10
相关论文
共 50 条
  • [31] Removal of Nickel(II) from Wastewater: Activated Carbons from Oilcakes
    Hema, M.
    Srinivasan, K.
    ASIAN JOURNAL OF CHEMISTRY, 2010, 22 (05) : 3675 - 3690
  • [32] Activated carbons developed from surplus sewage sludge for the removal of dyes from dilute aqueous solutions
    Martin, MJ
    Artola, A
    Balaguer, MD
    Rigola, M
    CHEMICAL ENGINEERING JOURNAL, 2003, 94 (03) : 231 - 239
  • [33] Removal of naphthalene from aqueous solution on chemically modified activated carbons
    Ania, C. O.
    Cabal, B.
    Arenillas, A.
    Parra, J. B.
    Rubiera, F.
    Pis, J. J.
    WATER RESEARCH, 2007, 41 (02) : 333 - 340
  • [34] Trichloroethylene adsorption from aqueous solutions by activated carbons
    Tamara A. Krasnova
    Oxana V. Belyaeva
    Alena K. Gorelkina
    Irina V. Timoshchuk
    Natalia V. Gora
    Nadezhda S. Golubeva
    Carbon Letters, 2020, 30 : 281 - 287
  • [35] Trichloroethylene adsorption from aqueous solutions by activated carbons
    Krasnova, Tamara A.
    Belyaeva, Oxana, V
    Gorelkina, Alena K.
    Timoshchuk, Irina, V
    Gora, Natalia, V
    Golubeva, Nadezhda S.
    CARBON LETTERS, 2020, 30 (03) : 281 - 287
  • [36] Adsorption of diclofenac sodium from aqueous solutions on commercial activated carbons
    Lach, Joanna
    Szymonik, Anna
    DESALINATION AND WATER TREATMENT, 2020, 186 : 418 - 429
  • [37] Adsorption of Naproxen Sodium from Aqueous Solutions on Commercial Activated Carbons
    Lach, Joanna
    Szymonik, Anna
    JOURNAL OF ECOLOGICAL ENGINEERING, 2019, 20 (10): : 241 - 251
  • [38] Activated Carbons from Coal/Pitch and Polyethylene Terephthalate Blends for the Removal of Phenols from Aqueous Solutions
    Lorenc-Grabowska, Ewa
    Gryglewicz, Grazyna
    Machnikowski, Jacek
    Diez, Maria-Antonia
    Barriocanal, Carmen
    ENERGY & FUELS, 2009, 23 (5-6) : 2675 - 2683
  • [39] Removal of Nickel and Cobalt from Aqueous Solutions by Na-Activated Bentonite
    Stella Triantafyllou
    Eirini Christodoulou
    Paraskevi Neou-Syngouna
    Clays and Clay Minerals, 1999, 47 : 567 - 572
  • [40] Kinetics of adsorption of pharmaceutical substances from aqueous solutions on activated carbons
    E. A. Korzh
    S. K. Smolin
    N. A. Klymenko
    Journal of Water Chemistry and Technology, 2016, 38 : 187 - 193