Detection of Financial Statement Fraud Using Evolutionary Algorithms

被引:18
作者
Alden, Matthew E. [1 ]
Bryan, Daniel M. [1 ]
Lessley, Brenton J. [1 ]
Tripathy, Arindam [1 ]
机构
[1] Univ Washington Tacoma, Tacoma, WA 98402 USA
关键词
evolutionary algorithm; fuzzy rule-based classifier; financial statement fraud detection; SAS No. 99;
D O I
10.2308/jeta-50390
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In this paper, we use a Genetic Algorithm (GA) and MARLEDA-a modern Estimation of Distribution Algorithm (EDA)-to evolve and train several fuzzy rule-based classifiers (FRBCs) to detect patterns of financial statement fraud. We find that both GA and MARLEDA demonstrate a better ability to classify unseen corporate data observations than those of a traditional logistic regression model, and provide validity for detecting financial statement fraud with Evolutionary Algorithms (EAs) and FRBCs. Using ten-fold cross-validation, the GA and MARLEDA yield average training classification accuracy rates of 75.47 percent and 74.26 percent, respectively, and average validation accuracy rates of 63.75 percent and 64.46 percent, respectively.
引用
收藏
页码:71 / 94
页数:24
相关论文
共 50 条
[41]   Noise Radar Waveform Design Using Evolutionary Algorithms and Negentropy Constraint [J].
Senica, Afonso L. ;
Marques, Paulo A. C. ;
Figueiredo, Mario A. T. .
REMOTE SENSING, 2025, 17 (08)
[42]   A Bayesian Damage Identification Technique Using Evolutionary Algorithms - a Comparative Study [J].
Varmazyar, M. ;
Haritos, N. ;
Kirley, M. .
ELECTRONIC JOURNAL OF STRUCTURAL ENGINEERING, 2015, 14 (01) :1-19
[43]   Comparison of Certain Evolutionary Algorithms [J].
P. A. Borisovskii ;
A. V. Eremeev .
Automation and Remote Control, 2004, 65 :357-362
[44]   GROUP SELECTION IN EVOLUTIONARY ALGORITHMS [J].
Perini, Alpar .
KEPT 2009: KNOWLEDGE ENGINEERING PRINCIPLES AND TECHNIQUES, 2009, :175-179
[45]   Evolutionary algorithms for the satisfiability problem [J].
Gottlieb, J ;
Marchiori, E ;
Rossi, C .
EVOLUTIONARY COMPUTATION, 2002, 10 (01) :35-50
[46]   Comparison of certain evolutionary algorithms [J].
Borisovskii, PA ;
Eremeev, AV .
AUTOMATION AND REMOTE CONTROL, 2004, 65 (03) :357-362
[47]   Partitional Algorithms for Hard Clustering Using Evolutionary and Swarm Intelligence Methods: A Survey [J].
Prakash, Jay ;
Singh, Pramod Kumar .
PROCEEDINGS OF SEVENTH INTERNATIONAL CONFERENCE ON BIO-INSPIRED COMPUTING: THEORIES AND APPLICATIONS (BIC-TA 2012), VOL 2, 2013, 202 :515-528
[48]   Global Localization of Unmanned Ground Vehicles Using Swarm Intelligence and Evolutionary Algorithms [J].
João L. C. Carvalho ;
Paulo C. M. A. Farias ;
Eduardo Furtado Simas Filho .
Journal of Intelligent & Robotic Systems, 2023, 107
[49]   Performance Evaluation of TWIST Welding Using Machine Learning Assisted Evolutionary Algorithms [J].
Kumar, Dhiraj ;
Ganguly, Samriddhi ;
Acherjee, Bappa ;
Kuar, Arunanshu Shekhar .
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, 49 (02) :2411-2441
[50]   Economic Modeling Using Evolutionary Algorithms: The Influence of Mutation on the Premature Convergence Effect [J].
Maschek, Michael K. .
COMPUTATIONAL ECONOMICS, 2016, 47 (02) :297-319