ON THE SINGULAR NUMBERS OF CERTAIN VOLTERRA INTEGRAL-OPERATORS

被引:19
作者
EDMUNDS, DE [1 ]
STEPANOV, VD [1 ]
机构
[1] RUSSIAN ACAD SCI,CTR COMP,KHABAROVSK 680042,RUSSIA
关键词
D O I
10.1006/jfan.1995.1143
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A criterion for a certain class of integral operators to belong to Schatten-von Neumann synmetric normed ideals is given. In particular, when 2 less than or equal to p < infinity, it is shown that the Schatten p-norm of such an operator can be estimated by constant multiples of an integral expression which is a natural extension of the well-known formula for the Hilbert-Schmidt norm. (C) 1995 Academic Press, Inc.
引用
收藏
页码:222 / 246
页数:25
相关论文
共 14 条
[1]  
Birman M. Sh., 1977, RUSS MATH SURV, V32, P15, DOI 10.1070/RM1977v032n01ABEH001592
[2]   THE MEASURE OF NONCOMPACTNESS AND APPROXIMATION NUMBERS OF CERTAIN VOLTERRA INTEGRAL-OPERATORS [J].
EDMUNDS, DE ;
STEPANOV, VD .
MATHEMATISCHE ANNALEN, 1994, 298 (01) :41-66
[3]  
GOHBERG IC, 1969, AM MATH SOC TRANSL, V18
[4]  
Konig H, 1986, OPERATOR THEORY ADV, V16
[5]   HARDYS INEQUALITY WITH WEIGHTS [J].
MUCKENHOUPT, B .
STUDIA MATHEMATICA, 1972, 44 (01) :31-+
[6]  
NEWMAN J, 2 SIDED ESTIMATES SI
[7]   SCHATTEN IDEAL BEHAVIOR OF A GENERALIZED HARDY OPERATOR [J].
NOWAK, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 118 (02) :479-483
[8]  
Ojnarov R., 1993, T MATINSTITUTA IMVST, V204, P240
[9]  
PELLER VV, 1985, USSR MATH SBORNIK, V122, P465
[10]  
Pietsch A., 1978, OPERATOR IDEALS