THE SUBCONSTITUENT ALGEBRA OF AN ASSOCIATION SCHEME .2.

被引:122
作者
TERWILLIGER, P [1 ]
机构
[1] UNIV WISCONSIN,DEPT MATH,MADISON,WI 53706
关键词
ASSOCIATION SCHEME; P-POLYNOMIAL; Q-POLYNOMIAL; DISTANCE-REGULAR GRAPH;
D O I
10.1023/A:1022480715311
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is a continuation of an article from the previous issue. In this section, we determine the structure of a thin, irreducible module for the subconstituent algebra of a P- and Q- polynomial association scheme. Such a module is naturally associated with a Leonard system. The isomorphism class of the module is determined by this Leonard system, which in turn is determined by four parameters: the endpoint, the dual endpoint, the diameter, and an additional parameter f. If the module has sufficiently large dimension, the parameter f takes one of a certain set of values indexed by a bounded integer parameter e.
引用
收藏
页码:73 / 103
页数:31
相关论文
empty
未找到相关数据