THE HISTOCHEMICAL G6PDH REACTION BUT NOT THE LDH REACTION WITH NEOTETRAZOLIUM IS SUITABLE FOR THE OXYGEN SENSITIVITY TEST TO DETECT CANCER-CELLS

被引:10
作者
GRIFFINI, P
VIGORELLI, E
JONGES, GN
VANNOORDEN, CJF
机构
[1] UNIV AMSTERDAM, ACAD MED CTR, DEPT HISTOL & CELL BIOL, 1105 AZ AMSTERDAM, NETHERLANDS
[2] UNIV PAVIA, INST GEN PATHOL, I-27100 PAVIA, ITALY
[3] UNIV PAVIA, DEPT ANIM BIOL, I-27100 PAVIA, ITALY
关键词
OXYGEN SENSITIVITY; SUPEROXIDE DISMUTASE; LACTATE DEHYDROGENASE; GLUCOSE-6-PHOSPHATE DEHYDROGENASE; CATALASE; HUMAN COLON CARCINOMA; RAT LIVER; COLON CARCINOMA METASTASES; NEOTETRAZOLIUM SALT; CYTOCHEMISTRY; HISTOPATHOLOGY;
D O I
10.1177/42.10.7930518
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
We used the oxygen sensitivity of the histochemical reaction to detect glucose-6-phosphate dehydrogenase (G6PDH) activity based on neotetrazolium (NT) reduction to discriminate cancer cells from normal cells. Formazan generation was strongly reduced in normal but not in malignant cells when the incubation was performed in oxygen instead of nitrogen. Competition for reductive equivalents between NT and oxygen via superoxide dismutase (SOD) has been suggested. Since SOD activity is usually decreased in cancer cells, NT reduction would not be hampered in these cells. We tested this hypothesis by demonstrating NAD-dependent lactate dehydrogenase (LDH) activity instead of NADP-dependent G6PDH activity in normal rat liver and colon, ia human colon carcinoma, and in experimentally induced metastases of colon carcinoma in rat livers. Reactions for both enzymes were determined cytophotometrically in an atmosphere of pure oxygen or nitrogen. G6PDH acted as described previously, showing distinct activity in cancer ails but strongly reduced activity in normal cells after incubation in oxygen, but this was not the case with LDH because formazan was also generated in normal tissue in oxygen. It appeared that after 5 min of incubation at 37 degrees C the residual activity of G6PDH in an atmosphere of oxygen compared with nitrogen was 0% in normal liver tissue and 15% in normal colon epithelium, whereas in colon carcinoma and in colon carcinoma metastasis in liver it was 48% and 33%, respectively. The residual activity of LDH in oxygen was 30% in normal female rat liver, 75% in normal male rat liver, and 38% in normal colon epithelium, whereas the residual activity in colon carcinoma and metastases in liver was 54% and 24%, respectively. These experiments dearly indicate that the oxygen sensitivity phenomenon is not solely an effect of competition for reducing equivalents between NT and oxygen via SOD, because NADPH generated by G6PDH and NADH generated by LDH have a similar redox potential. Apparently the system is more complex. The role of specifically NADPH-converting cellular systems such as NADPH-cytochrome P-450 reductase was excluded because incubations in the presence of erogenous NADPH as substrate for these systems revealed oxygen sensitivity. Involvement of NADPH-dependent lipid peroxidation in the oxygen sensitivity test is discussed.
引用
收藏
页码:1355 / 1363
页数:9
相关论文
共 33 条
[1]  
ALTMAN FP, 1970, CYTOLOGY AUTOMATION, P82
[2]  
BARRON ET, 1991, EUR J CANCER, V27, P985
[3]  
BERNHEIM FREDERICK, 1963, RADIATION RES SUPPL, V3, P17, DOI 10.2307/3583672
[4]  
BEST AJ, 1990, CANCER RES, V50, P5112
[5]   REACTION-RATE STUDIES OF GLUCOSE-6-PHOSPHATE-DEHYDROGENASE ACTIVITY IN SECTIONS OF RAT-LIVER USING 4 TETRAZOLIUM SALTS [J].
BUTCHER, RG ;
VANNOORDEN, CJF .
HISTOCHEMICAL JOURNAL, 1985, 17 (09) :993-1008
[6]   PRECISE CYTOCHEMICAL MEASUREMENT OF NEOTETRAZOLIUM-FORMAZAN BY SCANNING AND INTEGRATING MICRODENSITOMETRY [J].
BUTCHER, RG .
HISTOCHEMIE, 1972, 32 (02) :171-&
[7]   OXYGEN AND PRODUCTION OF FORMAZAN FROM NEOTETRAZOLIUM CHLORIDE [J].
BUTCHER, RG .
HISTOCHEMISTRY, 1978, 56 (3-4) :329-340
[8]   DEHYDROGENASE-ACTIVITY AND LOSS OF FORMAZAN FROM TISSUE-SECTIONS [J].
BUTCHER, RG ;
DAWSON, AL ;
KNAAB, SA ;
GAHAN, PB .
HISTOCHEMICAL JOURNAL, 1980, 12 (05) :591-598
[9]  
BUTCHER RG, 1979, QUANTITATIVE CYTOCHE, P241
[10]  
Cheeseman K H, 1984, Toxicol Pathol, V12, P235