THE GOLDEN-THOMPSON TRACE INEQUALITY IS COMPLEMENTED

被引:87
作者
HIAI, F [1 ]
PETZ, D [1 ]
机构
[1] HUNGARIAN ACAD SCI,INST MATH,H-1364 BUDAPEST,HUNGARY
关键词
D O I
10.1016/0024-3795(93)90029-N
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a class of trace inequalities which complements the Golden-Thompson inequality. For example, Tr(e(pA) # e(pB))2/p less-than-or-equal-to Tr e(A+B) holds for all p > 0 when A and B are Hermitian matrices and # denotes the geometric mean. We also prove related trace inequalities involving the logarithmic function; namely p-1 Tr X log Y(p)/2X(p)Y(p)/2) less-than-or-equal-to Tr X(log X + log Y) less-than-or-equal-to p-1 Tr X log X(p)/2Y(p)X(p)/2 for all p > 0 when X and Y are nonnegative matrices. These inequalities supply lower and upper bounds on the relative entropy.
引用
收藏
页码:153 / 185
页数:33
相关论文
共 34 条
[2]  
Ando T., 1978, TOPICS OPERATOR INEQ
[3]   ON AN INEQUALITY OF LIEB AND THIRRING [J].
ARAKI, H .
LETTERS IN MATHEMATICAL PHYSICS, 1990, 19 (02) :167-170
[4]   GOLDEN-THOMPSON AND PEIERLS-BOGOLUBOV INEQUALITIES FOR A GENERAL NONNEUMANN ALGEBRA [J].
ARAKI, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 34 (03) :167-178
[5]  
Araki H., 1977, PUBL RIMS KYOTO U, V13, P173
[6]  
Belavkin Viacheslav P., 1982, ANN I HENRI POINCARE, V37, P51
[7]   SCHWARZ INEQUALITY FOR POSITIVE LINEAR MAPS ON C-STAR-ALGEBRAS [J].
CHOI, MD .
ILLINOIS JOURNAL OF MATHEMATICS, 1974, 18 (04) :565-574
[8]   EIGENVALUE INEQUALITIES FOR PRODUCTS OF MATRIX EXPONENTIALS [J].
COHEN, JE ;
FRIEDLAND, S ;
KATO, T ;
KELLY, FP .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1982, 45 (JUN) :55-95
[9]   ON THE RELATIVE ENTROPY [J].
DONALD, MJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 105 (01) :13-34
[10]  
FACK T, 1982, J OPERAT THEOR, V7, P307