GROUP THEORETICAL-ANALYSIS OF DISPERSIVE LONG-WAVE EQUATIONS IN 2 SPACE DIMENSIONS

被引:120
作者
PAQUIN, G
WINTERNITZ, P
机构
[1] Centre de Recherches Mathématiques, Université de Montréal, Montréal, Que. H3C 3J7
来源
PHYSICA D | 1990年 / 46卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0167-2789(90)90115-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The symmetry algebra of an integrable dispersive long-wave equation in two space dimensions is shown to be infinite-dimensional and to have a Kac-Moody-Virasoro structure. The corresponding symmetry group is used to generate a large number of new solutions, in particular solitons, kinks and periodic waves. These waves have wave crests of quite general shapes. The results are compared to those for a nonintegrable two-space-dimensional dispersive long-wave equation, for which the symmetry group is finite-dimensional and wave crests are always straight lines. © 1990.
引用
收藏
页码:122 / 138
页数:17
相关论文
共 40 条
[1]  
Ablowitz M. J., 1981, SOLITONS INVERSE SCA
[2]   A CONNECTION BETWEEN NON-LINEAR EVOLUTION-EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF P-TYPE .2. [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (05) :1006-1015
[3]   A CONNECTION BETWEEN NON-LINEAR EVOLUTION-EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF P-TYPE .1. [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (04) :715-721
[4]   SCYLLA AND CHARYBDIS OBSERVED FROM SPACE [J].
ALPERS, W ;
SALUSTI, E .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1983, 88 (NC3) :1800-1808
[5]  
Benney D. J., 1964, J MATH PHYS, V43, P309, DOI 10.1002/sapm1964431309
[6]   SPECTRAL TRANSFORM FOR A 2-SPATIAL DIMENSION EXTENSION OF THE DISPERSIVE LONG-WAVE EQUATION [J].
BOITI, M ;
LEON, JJP ;
PEMPINELLI, F .
INVERSE PROBLEMS, 1987, 3 (03) :371-387
[7]   APPROXIMATE EQUATIONS FOR LONG WATER WAVES [J].
BROER, LJF .
APPLIED SCIENTIFIC RESEARCH, 1975, 31 (05) :377-395
[8]  
BUREAU F, 1972, ANN MAT PUR APPL, V91, P163, DOI DOI 10.1007/BF02428819
[9]  
BUREAU FJ, 1975, ANN MAT PUR APPL, V66, P1
[10]  
Byrd P.F., 1971, HDB ELLIPTIC INTEGRA