A NOTE ON ROTH THEOREM

被引:3
作者
GROSS, R [1 ]
机构
[1] BOSTON COLL,DEPT MATH,CHESTNUT HILL,MA 02167
关键词
D O I
10.1016/0022-314X(90)90010-O
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a quantitative version of Roth's Theorem over an arbitrary number field, similar to that given by Bombieri and van der Poorten. © 1990.
引用
收藏
页码:127 / 132
页数:6
相关论文
共 7 条
[1]   SOME QUANTITATIVE RESULTS RELATED TO ROTHS THEOREM [J].
BOMBIERI, E ;
VANDERPOORTEN, AJ .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1988, 45 :233-248
[2]  
DAVENPORT H, 1955, MATH SARAJEVO, V2, P160
[3]   THE APPROXIMATION TO ALGEBRAIC NUMBERS BY RATIONALS [J].
DYSON, FJ .
ACTA MATHEMATICA, 1947, 79 (04) :225-240
[4]   DYSON LEMMA FOR POLYNOMIALS IN SEVERAL-VARIABLES (AND THE THEOREM OF ROTH) [J].
ESNAULT, H ;
VIEHWEG, E .
INVENTIONES MATHEMATICAE, 1984, 78 (03) :445-490
[5]  
Lewis D., 1961, ACTA ARITH, V6, P333, DOI [10.4064/aa-6-3-333-363, DOI 10.4064/AA-6-3-333-363]
[6]  
MIGNOTTE M, 1974, J REINE ANGEW MATH, V268, P341
[7]  
SILVERMAN JH, 1987, J REINE ANGEW MATH, V378, P60