H-INFINITY CONTROL FOR NONLINEAR-SYSTEMS WITH OUTPUT-FEEDBACK

被引:244
作者
BALL, JA [1 ]
HELTON, JW [1 ]
WALKER, ML [1 ]
机构
[1] UNIV CALIF SAN DIEGO,DEPT MATH,LA JOLLA,CA 92093
基金
美国国家科学基金会;
关键词
D O I
10.1109/9.250523
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The basic question of nonlinear H(infinity) control theory is to decide, for a given two port system, when does feedback exist which makes the full system dissipative and internally stable. This problem can also be viewed as an interesting question about circuits. Also, after translation, the problem has a game theoretic statement. This paper presents several necessary conditions for solutions to exist and gives sufficient conditions for a certain construction to lead to a solution.
引用
收藏
页码:546 / 559
页数:14
相关论文
共 34 条
  • [1] Ball J. A., 1991, International Journal of Robust and Nonlinear Control, V1, P229, DOI 10.1002/rnc.4590010403
  • [2] NONLINEAR H-INFINITY CONTROL-THEORY FOR STABLE PLANTS
    BALL, JA
    HELTON, JW
    [J]. MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1992, 5 (03) : 233 - 261
  • [3] ON A LOCAL NONLINEAR COMMUTANT LIFTING THEOREM
    BALL, JA
    FOIAS, C
    HELTON, JW
    TANNENBAUM, A
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1987, 36 (03) : 693 - 709
  • [4] INNER OUTER FACTORIZATION OF NONLINEAR OPERATORS
    BALL, JA
    HELTON, JW
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 104 (02) : 363 - 413
  • [5] SHIFT INVARIANT-MANIFOLDS AND NONLINEAR ANALYTIC-FUNCTION THEORY
    BALL, JA
    HELTON, JW
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 1988, 11 (05) : 615 - 725
  • [6] BALL JA, 1988, IEEE C DECISION CONT, P2376
  • [7] BALL JA, 1989, IEEE C DEC CONTR, P956
  • [8] BALL JA, 1990, ROBUST CONTR LINEAR, V2, P1
  • [9] BALL JA, 1991, VARIATIONAL APPROACH
  • [10] Basar T, 1991, H OPTIMAL CONTROL RE